Chapitre

Analyse asymptotique

Résumé

E chapitre est une base utilisée dans de nombreuses situations : calcul de limites, et plus tard, pour des développements limités et des comportements de fonctions. Il est à connaître rapidement.

Plan du cours.

Chapitre 21. Analyse asymptotique

I. Négligeabilité
II. Equivalence
Exercices
Corrigés 2

« Ce qu'on fait de sa seule vie n'est jamais négligeable. Mais rien ne la gâche aussi sûrement que trop d'efforts pour la sauver. »

Jean d'Ormesson (1925–). L'amour est un plaisir

Objectifs _____

La liste ci-dessous représente les éléments à maitriser absolument. Pour cela, il faut savoir refaire les exemples et exercices du cours, ainsi que ceux de la feuille de TD.

① Concernant la négligeabilité de suites et de fonctions :	
 connaître la définition connaître les différentes propriétés usuelles connaître les négligeabilités usuelles 	. 🗆
② Concernant l'équivalence de suites et de fonctions :	
• connaître la définition	. 🗆 . 🗆

A. Crouzet 2 ©(1)®

I. Négligeabilité

Dans toute cette partie, x_0 désignera ou bien un nombre réel, ou bien $+\infty$, ou bien $-\infty$. Rappelons tout d'abord la notion de voisinage :

Définition 21.1.

On appelle **voisinage** de x_0 :

- un intervalle de la forme $]x_0 \varepsilon, x_0 + \varepsilon[$, ou un intervalle contenant x_0 dont x_0 n'est pas une borne.
-]A, $+\infty$ [ou [A, $+\infty$ [, avec A réel, si $x_0 = +\infty$.
-] $-\infty$, A[ou] $-\infty$, A], avec A réel, si $x_0 = -\infty$.

1. Définition

Définition 21.2. Cas des fonctions

Soient f et g définies au voisinage de x_0 , avec g ne s'annulant pas au voisinage de x_0 . Alors, on dit que f est **négligeable** devant g au voisinage de x_0 , et on note $f = o_{x_0}(g)$, si

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

 $f=o_{x_0}(g)$ peut se noter également $f(x)=o_{x_0}(g(x))$ ou encore f(x)=o(g(x)) et se lit « f est un petit o de g au voisinage de x_0 ».

Exemple 21.1

Par exemple, $x = o(x^2)$ puisque

$$\lim_{x \to +\infty} \frac{x}{x^2} = \lim_{x \to +\infty} \frac{1}{x} = 0$$

Exercice 21.2

Montrer que $\sin(x) = o(\sqrt{x})$

Solution

En effet, pour tout x > 0:

$$\frac{\sin(x)}{\sqrt{x}} = \frac{\sin(x)\sqrt{x}}{\sqrt{x}\sqrt{x}}$$
$$= \sqrt{x}\frac{\sin(x)}{x}$$

Puisque $\xrightarrow[x]{\sin(x)} \xrightarrow[x\to 0]{} 1$ et $\sqrt{x} \xrightarrow[x\to 0]{} 0$, par produit

$$\lim_{x \to 0} \frac{\sin(x)}{\sqrt{x}} = 0$$

et donc $\sin(x) = o(\sqrt{x})$.

Rappelons la définition déjà vue pour les suites :

A. Crouzet 3 ©(1)©

Définition 21.3. Cas des suites

Soient (u_n) et (v_n) deux suites, telles que (v_n) ne s'annule pas à partir d'un certain rang. On dit que (u_n) est négligeable devant (v_n) , et on note $u_n=o_{+\infty}\left(v_n\right)$, voire $u_n=o\left(v_n\right)$ si

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = 0.$$

Proposition 21.1.

$$\begin{split} &f\mathop{=}_{x_0}o(1) \text{ si et seulement si } \lim_{x\to x_0}f(x)=0.\\ &f-\ell\mathop{=}_{x_0}o(1) \text{ si et seulement si } f\mathop{\longrightarrow}_{x\to x_0}\ell. \end{split}$$

Démonstration

En effet, la fonction constante égale à 1 ne s'annule pas au voisinage de x_0 et on a $f=o_{x_0}(1)$ par définition si et seulement si

$$\lim_{x\to x_0}\frac{f(x)}{1}=0 \Longleftrightarrow \lim_{x\to x_0}f(x)=0$$

Pour le deuxième point, $f - \ell = o(1)$ et donc $f - \ell \xrightarrow[x \to x_0]{} 0$ soit $f \xrightarrow[x \to x_0]{} \ell$.

RÉFÉRENCE HISTORIQUE

Les différentes méthodes de comparaisons que nous allons voir ont été introduites par Paul du Bois-Reymond en 1872. Ils ont été développés et des notations ont été introduites, par Godfrey Harold Hardy qui notait $f(x) \ll g(x)$ puis par Edmund Landau qui utilisa f = o(g).

Négligeabilités usuelles

On dispose d'un ensemble de négligeabilités à connaitre.

Théorème 21.2. Négligeabilités usuelles – fonctions

Soient α et β deux réels strictement positifs. On a

• Si $\alpha < \beta$, on a

$$x^{\alpha} = o(x^{\beta})$$
 et $x^{\beta} = o(x^{\alpha})$

$$(\ln(x))^{\alpha} = o((\ln(x))^{\beta})$$
 et $|\ln(x)|^{\alpha} = o(|\ln(x)|^{\beta})$.

• Si $0 , alors <math>p^x = o(q^x)$.

Démonstration

On prend $\alpha < \beta$ et 0 .

$$\frac{x^{\alpha}}{x^{\beta}} = \frac{1}{x^{\beta-\alpha}} \xrightarrow[x \to +\infty]{} 0$$

$$\frac{\ln(x)^{\alpha}}{\ln(x)^{\beta}} = \frac{1}{\ln(x)^{\beta-\alpha}} \xrightarrow[x \to +\infty]{} 0$$

$$\frac{p^{x}}{q^{x}} = e^{x(\ln(p) - \ln(q))} \xrightarrow[x \to +\infty]{} 0$$

$$\frac{x^{\beta}}{x^{\alpha}} = x^{\beta - \alpha} \xrightarrow[x \to 0]{} 0$$
$$\frac{|\ln(x)|^{\alpha}}{|\ln(x)|^{\beta}} = \frac{1}{|\ln(x)|^{\beta - \alpha}} \xrightarrow[x \to 0]{} 0$$

A. Crouzet 4 $\Theta(\mathbf{\hat{I}})$

Théorème 21.3. Croissances comparées – fonctions

Soient α et β deux réels strictement positifs.

• Si q > 1, on a

$$x^{\alpha} = o(q^x)$$

et en particulier $x^{\alpha} = o(e^x)$.

• Si q > 1 alors

$$|x|^{\alpha} = o\left(\frac{1}{a^x}\right).$$

• On a

$$(\ln(x))^{\alpha} = o_{+\infty}(x^{\beta})$$
 et $|\ln(x)|^{\alpha} = o\left(\frac{1}{x^{\beta}}\right)$

• Si 0 < q < 1, alors

$$q^x = o\left(\frac{1}{x^\alpha}\right).$$

Démonstration

Cela découle des croissances comparées. Par exemple

$$\frac{(\ln(x))^{\alpha}}{x^{\beta}} \xrightarrow[x \to +\infty]{} 0$$

donc $(\ln(x))^{\alpha} = o(x^{\beta}).$

On rappelle les négligeabilités vues dans le cas des suites :

Théorème 21.4. Négligeabilités usuelles - cas des suites

Soient $\alpha > 0$, $\beta > 0$ et $q \in \mathbb{R}$.

- On a $(\ln(n))^{\beta} = o(n^{\alpha})$. Si q > 1, alors $n^{\alpha} = o(q^n)$.
- Si 0 < q < 1, alors $q^n = o\left(\frac{1}{n^\alpha}\right)$.
- Si q > 1, alors $q^n = o(n!)$. On a $n! = o(n^n)$.

Propriétés

Propriété 21.5. Transitivité et linéarité

Soient f, g et h des fonctions définies au voisinage de x_0 :

- Transitivité : si f = o(g) et g = o(h), alors f = o(h). Linéarité : si f = o(h) et g = o(h), alors pour tous réels a et b, on a af + bg = o(h)

Démonstration

Si $f = o_{x_0}(g)$ et $g = o_{x_0}(h)$ alors g et h ne s'annulent pas au voisinage de x_0 , et on peut écrire

$$\frac{f}{h} = \frac{f}{q} \times \frac{g}{h}$$

5

et ainsi $\lim_{x\to x_0}\frac{f(x)}{h(x)}=0$ par produit des limites. De même, si $f=o_{x_0}(h)$ et $g=o_{x_0}(h)$ alors h ne s'annule pas au voisinage de x_0 et on a

$$\frac{af + bg}{h} = a\frac{f}{h} + b\frac{g}{h}$$

Par somme et produit des limites, on en déduit donc que $\lim_{x\to x_0} \frac{(af+bg)(x)}{h(x)} = 0$.

Propriété 21.6. Produits

Soient f, g, h et φ des fonctions définies au voisinage de x_0 .

- Si f = o(g) et $h = o(\varphi)$, alors $f \times h = o(g \times \varphi)$. Si f = o(g), alors $f \times \varphi = o(g \times \varphi)$.

Démonstration

Toujours de la même manière :

$$\begin{split} \frac{f \times h(x)}{g \times \varphi(x)} &= \frac{f(x)}{g(x)} \times \frac{h(x)}{\varphi(x)} \xrightarrow[x \to x_0]{} 0 \\ \frac{f \times \varphi(x)}{g \times \varphi(x)} &= \frac{f(x)}{g(x)} \xrightarrow[x \to x_0]{} 0. \end{split}$$

Remarque

On peut également diviser des équivalents, si les fonctions sont bien définies. Le plus classique : si $f(x) = o_0(x^n)$, alors pour tout $p \leqslant n$, $\frac{f(x)}{x^p} = o_0(x^{n-p})$. En effet

$$\frac{\frac{f(x)}{x^p}}{x^{n-p}} = \frac{f(x)}{x^n} \underset{x \to 0}{\longrightarrow} 0$$

On a vu que si f et g sont des petits o de h, alors f+g également. En revanche, dans le cas général, on ne peut pas ajouter les petits o : si f = o(h) et $g = o(\varphi)$ alors f + g n'est pas

L'idée est que c'est le plus « gros » des petits o qui l'emporte. Par exemple, si

$$f(x) = x - x^2 + x^3 + o(x^3)$$
 et $g(x) = 1 - x^2 + o(x^4)$

alors

$$f(x) + g(x) = x - x^2 + x^3 + o(x^3) + 1 - x^2 + o(x^4) = 1 + x - 2x^2 + x^3 + o(x^3)$$

puisque $x^4 = o(x^3)$: c'est x^3 le « plus gros ».

Exercice 21.3

Soient f et g deux fonctions telles que

$$f(x) = 1 - \frac{1}{x} + o\left(\frac{1}{x^2}\right)$$
 et $g(x) = x - \frac{1}{x^2} + \frac{1}{x^3} + o\left(\frac{1}{x^3}\right)$.

Déterminer une expression de f + g au voisinage de $+\infty$.

Solution

On ajoute:

$$\begin{split} f(x) + g(x) &= 1 - \frac{1}{x} + o\left(\frac{1}{x^2}\right) + x - \frac{1}{x^2} + \frac{1}{x^3} + o\left(\frac{1}{x^3}\right) \\ &= 1 - \frac{1}{x} + x - \frac{1}{x^2} + o\left(\frac{1}{x^2}\right) \end{split}$$

$$\operatorname{car} \frac{1}{x^3} = o\left(\frac{1}{x^2}\right).$$

Propriété 21.7. Substitution

Soient f et g deux fonctions définies au voisinage de x_0 telles que f = o(g). Soit φ une fonction définie sur intervalle J de $\mathbb R$ et à valeurs dans I. Soit t_0 un point ou une extrémité (éventuellement infinie) de J. Si $\varphi(t) \underset{t \to t_0}{\longrightarrow} x_0$, alors $f(\varphi(t)) = o(g(\varphi(t)))$.

Démonstration

Si

$$\frac{f(x)}{g(x)} \xrightarrow[x \to x_0]{} 0 \quad \text{et} \quad \varphi(t) \xrightarrow[t \to t_0]{} x_0$$

alors par composée des limites

$$\frac{f(\varphi(t))}{g(\varphi(t))} \xrightarrow[t \to t_0]{} 0.$$

Propriété 21.8. Cas des suites

Les propriétés valables pour la négligeabilité des fonctions sont valables pour les suites. Ainsi :

- Si $u_n = o(v_n)$ et $v_n = o(w_n)$ alors $u_n = o(w_n)$.
- Si $u_n = o(v_n)$ et $w_n = o(v_n)$ alors pour tous réels $(a, b) \in \mathbb{R}$, $au_n + bw_n = o(v_n)$.
- Si $u_n = o(v_n)$ et $w_n = o(x_n)$ alors $u_n w_n = o(v_n x_n)$.
- Si $u_n = o(v_n)$ alors pour toute suite w, $u_n w_n = o(v_n w_n)$.
- Si f = o(g) et si $u_n \xrightarrow[n \to +\infty]{} x_0$ alors $f(u_n) = o(g(u_n))$.

Pour la somme, le résultat est identique : si $u_n = o(v_n)$ et $w_n = o(x_n)$, on n'a pas forcément $u_n + w_n = o(v_n + x_n)$. À nouveau, c'est le plus « fort » qui l'emporte.

II. Equivalence

1. Définitions

Définition 21.4. Équivalence de fonctions

Soient f et g deux fonctions définies au voisinage de x_0 . On dit que f est **équivalente** à g en x_0 si, au voisinage de x_0 , on a

$$f - g = o(g)$$

ce qu'on note $f \underset{x_0}{\sim} g$. Ainsi, puisque g ne s'annule pas au voisinage de x_0 , on a

$$f \underset{x_0}{\sim} g$$
 si et seulement si $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$

A. Crouzet 7 ©(1)©

 $\Theta(\mathbf{\hat{I}})$

Remarque

Il y a bien équivalence entre les deux définitions. En effet, puisque g ne s'annule pas au

$$f - g \underset{x_0}{=} o(g) \Longleftrightarrow \frac{f(x) - g(x)}{g(x)} \xrightarrow[x \to x_0]{} 0 \Longleftrightarrow \frac{f(x)}{g(x)} \xrightarrow[x \to x_0]{} 1.$$

Exemple 21.4

On a les équivalents suivants :

$$\sin(x) \sim x$$
 et $x^2 - x^3 \sim -x^3$.

En effet

$$\frac{\sin(x)}{x} \xrightarrow[x \to 0]{} 1 \quad \text{et} \quad \frac{x^2 - x^3}{-x^3} = -\frac{1}{x} + 1 \xrightarrow[x \to +\infty]{} 1.$$

Rappelons la définition déjà vue pour les suites :

Définition 21.5. Équivalence de suites

Soient u et v deux suites telles que v ne s'annule pas à partir d'un certain rang. On dit que Soient u et v deux suites telles que v ne s'annule pas a partir d'un certain rang. On an u u et v sont équivalentes, et on note $u_n \underset{+\infty}{\sim} v_n$ ou plus simplement $u_n \sim v_n$ si $\frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$.

De manière équivalente, u et v sont équivalentes si $u_n - v_n = o(v_n)$.

Proposition 21.9.

Soit f une fonction définie au voisinage de x_0 et ℓ un réel **non nul**. Alors $f \sim \ell$ si et seulement si $f(x) \xrightarrow[x \to x_0]{} \ell$.

De manière identique, $u_n \sim \ell$ si et seulement si $u_n \xrightarrow[n \to +\infty]{} \ell$.

Démonstration

En effet, puisque $\ell \neq 0$,

$$f \underset{x_0}{\sim} \ell \Longleftrightarrow \frac{f(x)}{\ell} \xrightarrow[x \to x_0]{} 1 \Longleftrightarrow f(x) \xrightarrow[x \to x_0]{} \ell.$$

Attention

On n'écrira jamais $f(x) \sim 0$, ce qui n'a aucun sens.

2. Propriétés

Propriété 21.10. Relation d'équivalence

Soient f, g et h trois fonctions définies au voisinage de x_0 , et ne s'annulant pas au voisinage $de x_0$.

L'équivalence de fonctions est une relation d'équivalence :

- RÉFLEXIVITÉ : $f \sim f$. TRANSITIVITÉ : si $f \sim g$ et $g \sim h$ alors $f \sim h$. SYMÉTRIE : si $f \sim g$ alors $g \sim f$.

Démonstration

Par calcul rapide:

$$\begin{split} \frac{f(x)}{f(x)} &= 1 \xrightarrow[x \to x_0]{} 1 \\ \frac{f(x)}{h(x)} &= \frac{f(x)}{g(x)} \frac{g(x)}{h(x)} \xrightarrow[x \to x_0]{} 1 \text{ par produit} \\ \frac{g(x)}{f(x)} &= \frac{1}{\frac{f(x)}{g(x)}} \xrightarrow[x \to x_0]{} 1 \text{ par quotient.} \end{split}$$

Propriété 21.11. Limites

Soient f et g deux fonctions telles que $f \underset{x_0}{\sim} g$. Si f admet une limite ℓ (finie, ou infinie) en x_0 , alors g admet également ℓ comme limite en x_0 .

Démonstration

En effet,

$$g(x) = \frac{g(x)}{f(x)} f(x) \xrightarrow[x \to x_0]{} 1 \times \ell.$$

Propriété 21.12. Equivalent et petit o

Soient f, g et h trois fonctions définies et ne s'annulant pas au voisinage de x_0 . Alors

- Si $f \sim g$ et g = o(h), alors f = o(h). Si f = o(g) et $g \sim h$ alors f = o(h).

Démonstration

Les deux résultats reposent sur l'écriture

$$\frac{f(x)}{h(x)} = \frac{f(x)}{g(x)} \times \frac{g(x)}{h(x)}.$$

Par produit, dans les deux cas, ces limites sont nulles.

Propriété 21.13. Compatibilité avec produit, quotient et puissances

Soient f, g, h et φ des fonctions définies et ne s'annulant pas au voisinage de x_0 . On suppose que $f \underset{x_0}{\sim} g$. Alors

- Produit: $f \times \varphi \underset{x_0}{\sim} g \times \varphi$.

- Inverse: ¹/_{f ≈ 0} ¹/_g.
 Si λ ∈ ℝ*, λf ≈ λg.
 Produit: si h ≈ φ, alors f × h ≈ g × φ.
 Exponentiation: s i α ∈ ℝ est tel que f^α et g^α sont bien définies au voisinage de x₀, on a

Pour la puissance, α ne doit pas dépendre de x et doit être une constante. Par exemple,

A. Crouzet 9 $\Theta(\mathbf{\hat{I}})$ $1 + x \sim 1$ et pourtant $(1 + x)^{\frac{1}{x}} \sim 1$ puisque

$$(1+x)^{\frac{1}{x}} = e^{\frac{1}{x}\ln(1+x)} \xrightarrow[x\to 0]{} e^1 = e$$
 par composée et taux d'accroissement.

 $(1+x)^{\frac{1}{x}}=\mathrm{e}^{\frac{1}{x}\ln(1+x)}\xrightarrow[x\to 0]{}\mathrm{e}^{1}=\mathrm{e}\ \mathrm{par}\ \mathrm{compos\acute{e}e}\ \mathrm{et}\ \mathrm{taux}\ \mathrm{d'accroissement}.$ Enfin, l'équivalence n'est pas compatible avec l'addition. En effet, $1+x\underset{0}{\sim}1,\ x-1\underset{0}{\sim}-1$ mais pourtant $2x\underset{x_{0}}{\sim}0$ (qui n'a aucun sens).

Démonstration

Il suffit d'écrire:

$$\begin{split} \frac{f \times \varphi}{g \times \varphi} &= \frac{f}{g} \xrightarrow[x \to x_0]{} 1 \\ \frac{\frac{1}{f}}{\frac{1}{g}} &= \frac{g}{f} \xrightarrow[x \to x_0]{} 1 \\ \frac{\lambda f}{\lambda g} &= \frac{f}{g} \xrightarrow[x \to x_0]{} 1 \\ \frac{f \times h}{g \times \varphi} &= \frac{f}{g} \frac{h}{\varphi} \xrightarrow[x \to x_0]{} 1 \text{ par produit} \\ \frac{f^{\alpha}}{g^{\alpha}} &= \left(\frac{f}{g}\right)^{\alpha} \xrightarrow[x \to x_0]{} 1 \text{ par composée.} \end{split}$$

Propriété 21.14. Substitution

Soient f et g deux fonctions définies au voisinage de x_0 telles que $f \sim g$. Soit φ une fonction définie sur intervalle J de $\mathbb R$ et à valeurs dans I. Soit t_0 un point ou une extrémité (éventuellement infinie) de J. Si $\varphi(t) \xrightarrow[t \to t_0]{} x_0$, alors $f(\varphi(t)) \underset{t_0}{\sim} g(\varphi(t))$.

Démonstration

Remarquons que, par hypothèse,

$$\frac{f(x)}{g(x)} \xrightarrow[x \to x_0]{} 1 \text{ et } \varphi(t) \xrightarrow[t \to t_0]{} x_0.$$

Par composée,

$$\frac{f(\varphi(t))}{g(\varphi(t))} \xrightarrow[t \to t_0]{} 1.$$

On ne peut pas composer à gauche. Dans ce cas, il faut étudier le quotient en détail. Par exemple, si f et g sont strictement positives sur I, si $f \underset{x \to x_0}{\sim} g$ et si g admet une limite en x_0 différente de 1, alors $\ln(f) \ \underset{x \to x_0}{\sim} \ln(g)$. En effet

$$\frac{\ln(f)}{\ln(g)} = \frac{\ln\left(g \times \frac{f}{g}\right)}{\ln(g)} = \frac{\ln(g) + \ln\left(\frac{f}{g}\right)}{\ln(g)} = 1 + \frac{\ln\left(\frac{f}{g}\right)}{\ln(g)} \xrightarrow[x \to x_0]{} 1.$$

C'est cependant à redémontrer à chaque utilisation.

L'ensemble des propriétés vues précédemment sont valables pour les suites :

Propriété 21.15. Cas des suites

On considère des suites u, v, w, x ne s'annulant pas à partir d'un certain rang.

- $u_n \sim u_n$. Si $u_n \sim v_n$ alors $v_n \sim u_n$. Enfin, si $u_n \sim v_n$ et $v_n \sim w_n$ alors $u_n \sim w_n$.
- Si $u_n \sim v_n$ et si v admet une limite finie, alors u admet la même limite.
- Si $u_n \sim v_n$ et $v_n = o(w_n)$ alors $u_n = o(w_n)$. De même, si $u_n = o(v_n)$ et $v_n \sim w_n$ alors $u_n = o(w_n)$.
- Si $u_n \sim v_n, \ w_n \sim x_n$ et $\alpha \in \mathbb{R}$ tel que (u_n^{α}) et (v_n^{α}) aient un sens, alors

$$u_n w_n \sim v_n w_n, \quad \frac{1}{u_n} \sim \frac{1}{v_n}, \quad u_n w_n \sim v_n x_n \quad \text{et} \quad u_n^{\alpha} \sim v_n^{\alpha}.$$

• Si $f \underset{x_0}{\sim} g$ et si $u_n \xrightarrow[n \to +\infty]{} x_0$ alors $f(u_n) \underset{x_0}{\sim} g(u_n)$.

3. Équivalences usuelles

On commence par des équivalences importantes :

Théorème 21.16. Polynômes et puissances

Soient α et β deux réels tels que $0 \le \alpha < \beta$. Alors

$$(x^{\alpha} + x^{\beta}) \underset{+\infty}{\sim} x^{\beta}$$
 et $(x^{\alpha} + x^{\beta}) \underset{0}{\sim} x^{\alpha}$.

De plus, si α et β sont des entiers, alors

$$(x^{\alpha} + x^{\beta}) \sim x^{\beta}$$

Ainsi, si p < q et si (a_p, \dots, a_q) sont des réels tels que $a_p \neq 0$ et $a_q \neq 0$, alors

$$\sum_{k=p}^{q} a_k x^k \underset{+\infty}{\sim} a_q x^q, \quad \sum_{k=p}^{q} a_k x^k \underset{0}{\sim} a_p x^p, \quad \text{et} \quad \sum_{k=p}^{q} \frac{a_k}{x^k} \underset{+\infty}{\sim} \frac{a_p}{x^p}.$$

Démonstration

En effet, puisque $\alpha - \beta < 0$ et $\beta - \alpha > 0$:

$$\frac{x^{\alpha} + x^{\beta}}{x^{\beta}} = x^{\alpha - \beta} + 1 \underset{x \to +\infty}{\longrightarrow} 0 + 1 = 1$$

et

$$\frac{x^{\alpha} + x^{\beta}}{x^{\alpha}} = 1 + x^{\beta - \alpha} \underset{x \to 0}{\longrightarrow} 1 + 0 = 1$$

Le reste s'en déduit des propriétés précédentes.

Avant d'obtenir d'autres équivalents importants, montrons un lemme :

Lemme 21.17. Equivalent d'ordre 1

Soit f une fonction définie sur un voisinage de 0, qu'on suppose dérivable sur ce voisinage. On suppose que $f'(0) \neq 0$. Alors

$$f(x) - f(0) \sim f'(0)x$$
.

A. Crouzet 11 ©()©

Démonstration

En effet, $x \mapsto f'(0)x$ ne s'annule pas sur un voisinage de 0 (sauf en 0) et

$$\frac{f(x) - f(0)}{f'(0)x} = \frac{1}{f'(0)} \frac{f(x) - f(0)}{x} \xrightarrow[x \to x_0]{} \frac{1}{f'(0)} f'(0) = 1$$

puisque f est dérivable en 0.

Théorème 21.18. Equivalences usuelles

On dispose des équivalents suivants :

- $\ln(1+x) \underset{0}{\sim} x$, $e^x 1 \underset{0}{\sim} x$, Si $\alpha \in \mathbb{R}^*$, $(1+x)^{\alpha} 1 \underset{0}{\sim} \alpha x$,

- $\begin{array}{ll} \bullet & \tan(x) \underset{0}{\sim} x, \\ \bullet & \arctan(x) \underset{0}{\sim} x, \\ \bullet & \cos(x) 1 \underset{0}{\sim} -\frac{x^2}{2}. \end{array}$

Démonstration

Les six premiers découlent du lemme précédent. Pour la dernière, on utilise la trigonométrie :

$$\cos(x) - 1 = \cos\left(\frac{x}{2} + \frac{x}{2}\right) - 1$$
$$= 1 - 2\sin^2\left(\frac{x}{2}\right) - 1$$
$$= -2\sin^2\left(\frac{x}{2}\right)$$

Pusique $\sin(x) \sim x$, par substitution, $\sin\left(\frac{x}{2}\right) \sim \frac{x}{2}$. Par exponentiation,

$$\left(\sin\left(\frac{x}{2}\right)\right)^2 \sim \left(\frac{x}{2}\right)^2$$

et finalement

$$\cos(x) - 1 \underset{0}{\sim} -2\frac{x^2}{4} = -\frac{x^2}{2}.$$

En appliquant les résultats précédents, et la substitution, on en déduit les équivalents suivants sur les fonctions et les suites :

Théorème 21.19.

Soit f une fonction définie au voisinage de x_0 telle que $u(x) \xrightarrow[x \to x_0]{} 0$. Soit u une suite de limite 0. Alors:

12

- $\ln(1+f(x)) \sim f(x)$ et $\ln(1+u_n) \sim u_n$. $e^{f(x)} 1 \sim f(x)$ et $e^{u_n} 1 \sim u_n$. Si $\alpha \in \mathbb{R}^*$, $(1+f(x))^{\alpha} 1 \sim \alpha f(x)$ et $(1+u_n)^{\alpha} 1 \sim \alpha u_n$. $\sin(f(x)) \sim f(x)$ et $\sin(u_n) \sim u_n$. $\tan(f(x)) \sim f(x)$ et $\tan(u_n) \sim u_n$. $\arctan(f(x)) \sim f(x)$ et $\arctan(u_n) \sim u_n$.

- $\bullet \ \cos(f(x)) 1 \mathop{\sim}\limits_{x_0} \frac{(f(x))^2}{2} \ {\rm et} \ \cos(u_n) 1 \sim \frac{u_n^2}{2}.$

Enfin, on dispose de deux résultats, concernant \ln et n!:

Corollaire 21.20.

Soit f une fonction définie au voisinage de x_0 telle que $f(x) \xrightarrow[x \to x_0]{} 1$. Soit u une suite de limite 1. Alors

$$\ln(f(x)) \underset{x_0}{\sim} f(x) - 1 \quad \text{et} \quad \ln(u_n) \sim u_n - 1.$$

Démonstration

En effet, $f(x) - 1 \xrightarrow[x \to x_0]{} 0$. D'après ce qui précède :

$$\ln(f(x)) = \ln(1 + (f(x) - 1)) \underset{x_0}{\sim} f(x) - 1.$$

Proposition 21.21. Formule de Stirling

On a

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}.$$

4. Exemples

Exercice 21.5

Déterminer un équivalent de $\sin\left(\arctan\left(\frac{1}{n}\right)\right)$.

Solution Puisque $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$, on a

$$\arctan\left(\frac{1}{n}\right) \sim \frac{1}{n}$$

mais on ne peut pas composer à gauche par sin. On le traite donc dans l'autre sens.

On note $u_n = \arctan\left(\frac{1}{n}\right)$. Par composée, $u_n \xrightarrow[n \to +\infty]{} 0$. Par substitution, on a alors

$$\sin(u_n) \sim u_n = \arctan\left(\frac{1}{n}\right).$$

Enfin, on a vu que $u_n \sim \frac{1}{n}$.

Par transitivité

$$\sin\left(\arctan\left(\frac{1}{n}\right)\right) \sim \frac{1}{n}.$$

Exercice 21.6

Déterminer un équivalent en 0 de $\sin^4(\sqrt{x})$.

Solution

Puisque $\sqrt{x} \xrightarrow[x\to 0]{} 0$, par composée

$$\sin\left(\sqrt{x}\right) \sim \sqrt{x}.$$

Par exponentiation

$$\sin^4\left(\sqrt{x}\right) \sim \left(\sqrt{x}\right)^4 = x^2.$$

@(**)**(**S**)

Exercice 21.7

Déterminer un équivalent de $\cos^4(x) - 1$ en 0.

Solution

Le seul équivalent qu'on a repose sur $\cos(x)-1$. On essaie de s'y ramener :

$$\cos^{4}(x) - 1 = (1 + \underbrace{\cos(x) - 1}_{x \to 0})^{4} - 1$$

$$\sim 4(\cos(x) - 1) \operatorname{car} (1 + u)^{4} - 1 \sim 4u$$

$$\sim 4\left(-\frac{x^{2}}{2}\right) = -2x^{2}.$$

Exercice 21.8

Déterminer un équivalent simple de $\frac{x^x-1}{x}$ en 0^+ .

Solution

Pour x > 0:

$$\frac{x^x - 1}{x} = \frac{e^{x \ln(x)} - 1}{x}$$

Par substitution, puisque $x \ln(x) \xrightarrow[x \to 0^+]{} 0$,

$$\mathrm{e}^{x\ln(x)} - 1 \underset{0}{\sim} x\ln(x)$$

puis, par quotient

$$\frac{\mathrm{e}^{x\ln(x)} - 1}{x} \sim \ln(x).$$

Exercices

Exercices

Négligeabilités

Exercice 1 Ordre de négligeabilité – fonctions (10 min.)

Classer les fonctions suivantes par ordre de négligeabilité en $+\infty$:

$$f_1(x) = x, \quad f_2(x) = \exp(x), \quad f_3(x) = \frac{1}{x}, \quad f_4(x) = 2, \quad f_5(x) = \ln(x), \quad f_6(x) = \sqrt{x} \ln x, \quad f_7(x) = \frac{\mathrm{e}^x}{\sqrt{x}}$$

Exercice 2 Ordre de négligeabilité – suites (10 min.)

Classer les suites suivantes par ordre de négligeabilité.

$$a_n = \frac{1}{n}$$
, $b_n = \frac{1}{n^2}$, $c_n = \frac{\ln n}{n}$, $d_n = \frac{e^n}{n^3}$, $e_n = n$, $f_n = 1$, $g_n = \sqrt{ne^n}$.

Equivalence

Exercice 3 Equivalences avec la définition – suite (10 min.)

Ces équivalences sont-elles vraies?

1.
$$n \sim n+1$$

2.
$$n^2 \sim n^2 + r$$

1.
$$n \sim n+1$$

2. $n^2 \sim n^2 + n$
3. $\ln(n) \sim \ln(10^6 n)$

$$\begin{array}{l} 4. \; \exp(n) \underset{+\infty}{\sim} \; \exp\left(n+10^{-6}\right) \\ 5. \; \exp(n) \underset{+\infty}{\sim} \; \exp(2n) \\ 6. \; \ln(n) \underset{+\infty}{\sim} \; \ln(n+1). \end{array}$$

5.
$$\exp(n) \stackrel{+\infty}{\sim} \exp(2n)$$

6.
$$\ln(n) \sim \ln(n+1)$$

Exercice 4 À la recherche des équivalents perdus (15 min.)

Déterminer un équivalent simple des suites suivantes :

1.
$$u_n = \frac{1}{n-1} - \frac{1}{n+1}$$

2.
$$v_n = \sqrt{n+1} - \sqrt{n-1}$$

3.
$$w_n = \frac{n^3 - \sqrt{1 + n^2}}{\ln n - 2n^2}$$

$$4. \ z_n = \sin\left(\frac{1}{\sqrt{n+1}}\right).$$

Exercice 5 Le retour des équivalents perdus (15 min.) •00

Déterminer un équivalent simple des fonctions suivantes :

1.
$$x + 1 + \ln x$$
 en 0 et en $+\infty$

2.
$$\cos(\sin x)$$
 en 0

3.
$$e^{\sqrt{x}} + e^{-\sqrt{x}}$$
 en $+\infty$

4.
$$\frac{\sin x \ln (1+x^2)}{x \tan x}$$
 en 0

5.
$$\ln(\sin x)$$
 en 0

6.
$$\ln(\cos x)$$
 en 0

Exercice 6 Des limites « simples » (10 min.)

1. Démontrer que

$$\ln(1+x) + x^2 \sim x$$
 et $x^2 + x^3 \sim x^2$.

En déduire $\lim_{x\to 0^+} \frac{\ln(1+x)+x^2}{x^2+x^3}$.

2. Démontrer que $\sin(2x) \sim 2x$ et $\tan(3x) \sim 3x$.

En déduire $\lim_{x\to 0^+} \frac{\sin(2x)}{\tan(3x)}$

Exercice 7 Encore des limites, toujours des limites (20 min.)

Déterminer les limites suivantes en utilisant des équivalents :

1.
$$\lim_{x \to 0} \frac{(1 - \cos x)(1 + 2x)}{x^2 - x^4}$$

$$5. \lim_{x \to 0} \frac{\ln(\cos x)}{1 - \cos 2x}$$

2.
$$\lim_{x \to 0} x(3+x) \frac{\sqrt{x+3}}{\sqrt{x}\sin(\sqrt{x})}$$

6.
$$\lim_{x \to +\infty} \sqrt{4x+1} \ln \left(1 - \frac{\sqrt{x+1}}{x+2} \right)$$

3.
$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{\tan(6x)}$$

7.
$$\lim_{x \to +\infty} \exp\left(\frac{1}{x^2}\right) - \exp\left(\frac{1}{(x+1)^2}\right)$$

4.
$$\lim_{x \to \pi/2} \frac{\ln\left(\sin^2 x\right)}{\left(\frac{\pi}{2} - x\right)^2}$$

8.
$$\lim_{x \to 0} \left(\frac{x}{\sin x} \right)^{\frac{\sin x}{x - \sin x}}$$

9.
$$\lim_{x \to 0} \frac{(1 - \cos x) \arctan x}{x \tan x}$$

Exercice 8 Je n'en peux plus des limites (de suites) (20 min.)

Déterminer les limites suivantes

1.
$$n! \sin\left(\frac{1}{n^n}\right)$$

4.
$$n^2 \ln \left(\frac{n^2 - 1}{n^2 + 1} \right)$$

7.
$$\frac{1 - \left(\frac{1}{n^3}\right)^{1/n}}{\left(\frac{1}{n^3}\right)^{1/n}}$$

3.
$$n \arctan \left(\sqrt{\sin \left(\frac{1}{n^2} \right)} \right)$$

5.
$$n^2(\sqrt[n]{1+n} - \sqrt[n]{n})$$

1.
$$n! \sin\left(\frac{1}{n^n}\right)$$
 4. $n^2 \ln\left(\frac{n^2 - 1}{n^2 + 1}\right)$ 7. $\frac{1 - \left(\frac{1}{n^3}\right)^{1/n}}{1 - \left(\frac{1}{n^2}\right)^{1/n}}$ 3. $n \arctan\left(\sqrt{\sin\left(\frac{1}{n^2}\right)}\right)$, 6. $\left(\cos\left(\frac{1}{n}\right)\right)^{n^2}$,

Exercice 9 Too much. (20 min.)

Déterminer les limites suivantes.

1.
$$\lim_{x\to 0} (1+x)^{1/x}$$
,

$$\begin{aligned} &1. & \lim_{x \to 0} (1+x)^{1/x}, \\ &2. & \lim_{x \to 0^+} \frac{2\sqrt{x}}{\ln(1+x)} \mathrm{e}^{-1/\sqrt{x}}, \end{aligned}$$

3.
$$\lim_{x \to 0} \frac{x \sin^2(x)}{\tan(x)(1 - \cos(x))}$$

3.
$$\lim_{x \to 0} \frac{x \sin^2(x)}{\tan(x)(1 - \cos(x))},$$
4.
$$\lim_{x \to -\infty} x \sin\left(\frac{5x^2}{7x^3 + 3x^2 + 1}\right),$$
5.
$$\lim_{x \to +\infty} (1 + x^2) \left(e^{\cos(1/x)} - e\right),$$

5.
$$\lim_{x \to +\infty} (1+x^2) \left(e^{\cos(1/x)} - e\right)$$

6.
$$\lim \sin(x) \ln(\tan(x))$$

$$\begin{aligned} &6. & \lim_{x \to 0} \sin(x) \ln(\tan(x)), \\ &7. & \lim_{x \to 1^{-}} \ln(1-x) \cos\left(\frac{\pi x}{2}\right), \end{aligned}$$

8.
$$\lim_{x \to +\infty} \sqrt{5x+1} \ln \left(1 - \frac{\sqrt{3x+1}}{7x+4} \right),$$

9.
$$\lim_{x \to +\infty} (\sqrt[3]{x + \sqrt[3]{x + \sqrt[3]{x}}} - \sqrt[3]{x}),$$

10.
$$\lim_{x \to +\infty} \left(\frac{\ln(1+x)}{\ln(x)} \right)^{x \ln(x)}$$

Exercice 10 Limites d'une somme (10 min.)

Soit $n \in \mathbb{N}$ tel que $n \ge 2$. Montrer que, pour tout $k \in [0, n-2]$ on a

$$0 \leqslant \frac{k!}{n!} \leqslant \frac{1}{n(n-1)}.$$

Déterminer alors, un équivalent de $\sum_{k=0}^{n} k!$ en $+\infty$.

Exercice 11 Equivalent et limites (25 min.)

Déterminer un équivalent et la limite des suites suivantes :

1.
$$\pi n - 4 \ln(n)$$
,

2.
$$\sqrt{n^2 + 3n} - n$$

1.
$$nn - 4 \ln(n)$$
,
2. $\sqrt{n^2 + 3n - n}$,
3. $\frac{n^{100!} - 10n! + 100^n}{10n + \sin(n) + \sqrt{n} \ln(n) + n^{100} e^{-n}}$,
4. $\ln(\cos(\tan(3e^{-n})))$,
5. $\frac{4 - 3n^2}{\sqrt[3]{8n^5 - n^2 + 6}}$,

4.
$$\ln(\cos(\tan(3e^{-n})))$$

5.
$$\frac{4-3n^2}{\sqrt[3]{8n^5} + n^2 + 6}$$

$$6. \sin\left(\sqrt{\frac{2n^2 - 2n + 1}{3n^3 + 4n + 5}}\right),$$

7.
$$\frac{1}{n} + \arctan\left(\frac{1}{\sqrt{n}}\right)$$

8.
$$\sum_{k=n}^{2n} \frac{1}{3^k}$$
,

9.
$$n - \sqrt[4]{n^4 \cos\left(\frac{1}{n}\right)}$$

10.
$$\frac{\ln(n)}{n+1} - \frac{\ln(n+1)}{n}$$
.

Exercice 12 Equivalents, encore, toujours (25 min.)

Déterminer des équivalents simples des fonctions suivantes.

1.
$$x \mapsto x \sqrt[5]{\ln(1+x)}$$
 en 0^+ .

2.
$$x \mapsto \ln\left(1 + \frac{1}{\ln(x)}\right)$$
 en $+\infty$.

3.
$$x \mapsto \arctan(\ln(x))$$
 en 1

4.
$$x \mapsto (x^4 - 3x^2 + 7) e^{1/x} en + \infty$$

5.
$$x \mapsto \sqrt[7]{x} - 1$$
 en 1

6.
$$\ln(3-x) - \ln(\sqrt{5}-x) \text{ en } -\infty$$

2.
$$x \mapsto \ln\left(1 + \frac{1}{\ln(x)}\right) \text{ en } +\infty.$$
 7. $x \mapsto 1 - 2x^4 + 9x^3\cos(x) + 7x^5\sin\left(\frac{1}{x}\right) \text{ en } +\infty$

3.
$$x \mapsto \arctan(\ln(x))$$
 en 1. 8. $x \mapsto \sqrt{6+x} - 3$ en 3,

4.
$$x \mapsto (x^4 - 3x^2 + 7) e^{1/x} en + \infty$$
 9. $x \mapsto \frac{x^2 + \ln(x)}{5 + xe^{-x}} en 0^+ puis en + \infty$,

10.
$$x \mapsto \ln(2\sin(x))$$
 en $\frac{\pi}{6}$.

Pour aller plus loin

Exercice 13 Equivalent avec Riemann (5 min.) •00

En utilisant les sommes de Riemann, déterminer un équivalent des sommes suivantes :

•
$$u_n = \sum_{k=1}^n k^{\alpha} \text{ avec } \alpha > 0.$$
 • $v_n = \sum_{k=1}^n \frac{1}{(n+2k)^3}.$ • $w_n = \sum_{k=1}^n k \cos\left(\frac{\pi k^2}{2n^2}\right).$

•
$$v_n = \sum_{k=1}^n \frac{1}{(n+2k)^3}$$
.

•
$$w_n = \sum_{k=1}^n k \cos\left(\frac{\pi k^2}{2n^2}\right)$$
.

Exercice 14 Avec Stirling (20 min.)

À l'aide de la formule de Stirling, démonter les équivalents suivantes :

$$\binom{2n}{n} \underset{+\infty}{\sim} \frac{4^n}{\sqrt{\pi n}}, \quad \ln(n!) \underset{+\infty}{\sim} n \ln(n), \quad \text{ et } \quad \sqrt[n]{n!} \underset{+\infty}{\sim} \frac{n}{e}$$

••• Exercice 15 Oral ESCP (20 min.)

Démontrer que, pour tout $x \in \mathbb{R}^+$, $\ln(1+x) \leqslant x$.

Déterminer alors

$$\lim_{n\to +\infty} \prod_{k=1}^n \left(1 + \frac{\ln(k)}{n^2}\right).$$

••• Exercice 16 Mais ai-je le droit? (20 min.)

Soient a et b deux réels strictement positifs. Montrer que

$$\lim_{n \to +\infty} \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} \right)^n = \sqrt{ab}.$$

••O Exercice 17 Comparons sans Stirling! (20 min.)

L'objectif de ce problème est de démontrer que, pour tout a > 0, on a

$$e^{an} = o(n!)$$

sans utiliser la formule de Stirling.

On fixe a > 0, et pour tout entier $n \in \mathbb{N}$, $u_n = e^{an}$ et $v_n = n!$.

1. Démontrer qu'il existe un entier n_0 tel que, pour tout entier $n \ge n_0$, on a

$$\frac{u_{n+1}}{u_n} \leqslant \frac{1}{2} \frac{v_{n+1}}{v_n}.$$

2. En déduire qu'il existe une constante C>0 telle que, pour tout $n\geqslant n_0,$ on a

$$u_n \leqslant C\left(\frac{1}{2}\right)^{n-n_0} v_n.$$

3. Conclure que $e^{an} = o(n!)$.

Exercices bilans -

•• Exercice 18 Formule de Stirling (35 min.)

On pourra utiliser, dans cet exercice, un résultat prouvé dans l'exercice sur les intégrales de Wallis du chapitre 15 :

$$\frac{(2n)!}{4^n(n!)^2}\frac{\pi}{2} \underset{+\infty}{\sim} \sqrt{\frac{\pi}{4n}}.$$

Pour tout $n \in \mathbb{N}^*$, on pose

$$x_n = \frac{n^n \sqrt{n}}{\mathrm{e}^n n!}, \quad u_n = \ln(x_n) \quad \text{et} \quad v_n = \ln(x_n) + \frac{1}{12(n-1)}.$$

1. a) Vérifier par le calcul que, pour tout $n \in \mathbb{N}^*$,

$$\int_{n}^{n+1} (x-n)(n+1-x) \, \mathrm{d}x = \frac{1}{6}$$

et que

$$\int_{n}^{n+1} (x-n)(n+1-x) \frac{1}{x^2} \, \mathrm{d}x = -2 + (2n+1) \left(\ln(n+1) - \ln(n) \right).$$

b) En déduire que

$$\forall\,n\in\mathbb{N}^*,\quad 0\leqslant \left(n+\frac{1}{2}\right)\ln\left(1+\frac{1}{n}\right)-1\leqslant \frac{1}{12n^2}.$$

2. Montrer que

$$\forall n \in \mathbb{N}^*, \quad \frac{x_{n+1}}{x_n} = \frac{1}{e} \left(1 + \frac{1}{n} \right)^{n+1/2}.$$

- 3. Montrer que $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ convergent vers la même limite.
- 4. En déduire qu'il existe un réel C > 0 tel que $n! \sim_{+\infty} C\sqrt{n} \left(\frac{n}{e}\right)^n$.
- 5. Montrer enfin, en utilisant le résultat rappelé, que $C = \sqrt{2\pi}$.

Sujets de concours

●●○ Sujet 1 Ecricome 2015 voie S (50 min.)

1. On note pour tout $x \in I = \left]0, \frac{\pi}{2}\right[$:

$$f(x) = \frac{1}{3} (2\sin(x) + \tan(x))$$
 et $g(x) = \frac{3\sin(x)}{2 + \cos(x)}$.

- a) Factoriser le polynôme $P(X) = 2X^3 3X^2 + 1$ dans $\mathbb{R}[X]$.
- b) On pose u(x) = f(x) x pour tout $x \in I$.

 Justifier que u est dérivable sur I et que pour tout $x \in I$, $u'(x) = \frac{P(\cos(x))}{3\cos^2(x)}$.
- c) En déduire les variations de u sur I.
- d) On pose v(x) = x g(x) pour tout $x \in I$. Justifier qu'il existe un polynôme Q de $\mathbb{R}[X]$, de degré deux, tel que pour tout $x \in I$, $v'(x) = \frac{Q(\cos(x))}{(2 + \cos(x))^2}.$
- e) En déduire les variations de v sur I.
- f) Montrer que :

$$\forall x \in I, g(x) < x < f(x).$$

- 2. a) En utilisant le fait que $\frac{\pi}{12} = \frac{\pi}{4} \frac{\pi}{6}$, calculer $\cos\left(\frac{\pi}{12}\right)$, $\sin\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{\pi}{12}\right)$.
 - b) Déduire de la question 1.f un encadrement de π .
- 3. On pose pour tout entier naturel n,

$$a_n = \sin\left(\frac{\pi}{3 \times 2^n}\right)$$
 et $b_n = \cos\left(\frac{\pi}{3 \times 2^n}\right)$.

a) Justifier que pour tout réel θ ,

$$\cos(2\theta) = 1 - 2\sin^2(\theta)$$

et en déduire que pour tout entier naturel n,

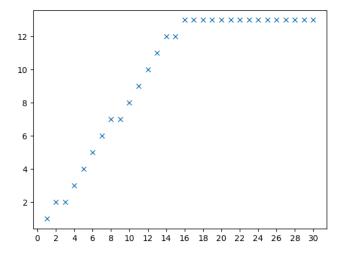
$$a_{n+1} = \sqrt{\frac{1-b_n}{2}} \ (\star) \quad \text{et} \quad b_{n+1} = \sqrt{\frac{1+b_n}{2}} \ (\star\star)$$

b) Montrer que pour tout $n \in \mathbb{N}$,

$$9 \times 2^n \frac{a_n}{2 + b_n} < \pi < 2^n \left(2a_n + \frac{a_n}{b_n} \right).$$

- c) Justifier que les deux termes de l'encadrement précédent tend vers π quand n tend vers l'infini.
- d) Compléter la fonction Python suivant afin qu'elle retourne, à l'aide des relations (\star) et $(\star\star)$ et de la question 3.b, une approximation de π à e près, ainsi que le nombre k d'itérations qui ont été nécessaires.

- e) On souhaite étudier l'évolution du nombre d'itérations nécessaires en fonction de la précision souhaitée. Écrire une fonction PYTHON qui prend comme paramètre d'entrée un entier p et qui retourne une liste de taille p qui contient les nombres d'itérations nécessaires pour les précisions 10^{-k} pour $k \in \{1, 2, ..., p\}$.
- f) On utilise la fonction précédente avec p=30 et on représente graphiquement les valeurs obtenues. On obtient le graphe suivant :



Commenter ce graphe.

A. Crouzet 20 ©®

Corrigés

Corrigés des exercices

Exercice 1

On utilise les négligeabilités usuelles. On obtient :

$$f_3 = o(f_4)$$
 $f_4 = o(f_5)$ $f_5 = o(f_6)$ $f_6 = o(f_1)$ $f_1 = o(f_7)$ $f_7 = o(f_2)$.

Exercice 2

En utilisant les négligéabilités usuelles :

$$b_n = o(a_n) \qquad a_n = o(c_n) \qquad c_n = o(f_n)$$

$$f_n = o(e_n) \qquad e_n = o(d_n) \qquad d_n = o(g_n)$$

Exercice 3

On constate que les suites ne s'annulent pas au voisinage de $+\infty$. Il suffit donc de déterminer les limites du quotient, dans chacun des cas.

1.
$$\frac{n}{n+1} = \frac{1}{1+\frac{1}{n}} \xrightarrow[n \to +\infty]{} 1. \text{ Ainsi } n \sim n+1.$$

2.
$$\frac{n^2}{n^2 + n} = \frac{1}{\frac{1}{n} + 1} \xrightarrow[n \to +\infty]{} 1$$
. Ainsi, $n^2 \sim n^2 + 1$.

Remarquons que ces deux cas correspondent aux équivalences usuelles dans le cas d'un polynôme.

3. Par quotient

$$\frac{\ln(10^6 n)}{\ln(n)} = \frac{\ln(10^6) + \ln(n)}{\ln(n)} = \frac{10^6}{\ln(n)} + 1 \xrightarrow[n \to +\infty]{} 1.$$

Ainsi, $\ln(n) \sim \ln(10^6 n)$.

4. Par quotient toujours

$$\frac{\exp(n)}{\exp(n+10^{-6})} = e^{-10^{-6}} \neq 1.$$

- Ainsi, $\exp(n) \nsim \exp(n + \mathbb{1}0^{-6})$. 5. De même, $\frac{\mathrm{e}^n}{\mathrm{e}^{2n}} = \mathrm{e}^{-n} \xrightarrow[n \to +\infty]{} 0$. Ainsi, $\mathrm{e}^n \nsim \mathrm{e}^{2n}$. 6. Enfin, par quotient toujours

$$\frac{\ln(n+1)}{\ln(n)} = \frac{\ln\left(n\left(1+\frac{1}{n}\right)\right)}{\ln(n)} = \frac{\ln(n) + \ln\left(1+\frac{1}{n}\right)}{\ln(n)} = 1 + \frac{\ln\left(1+\frac{1}{n}\right)}{\ln(n)} \xrightarrow[n \to +\infty]{} 1$$

Ains, $\ln(n) \sim \ln(n+1)$.

A. Crouzet 21 $\Theta(\mathbf{\hat{f}})$

Exercice 4

On n'a pas le droit d'additionner ou soustraire des équivalents. Il faut donc modifier l'écriture pour conclure :

$$\begin{aligned} u_n &= \frac{2}{n^2 - 1} \sim \frac{2}{n^2} \\ v_n &= \left(\sqrt{n + 1} - \sqrt{n - 1}\right) \frac{\sqrt{n + 1} + \sqrt{n - 1}}{\sqrt{n + 1} + \sqrt{n - 1}} \\ &= \frac{2}{\sqrt{n + 1} + \sqrt{n - 1}} \\ &= \frac{2}{\sqrt{n} \left(\sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n}}\right)} \\ &\sim \frac{2}{\sqrt{n} \times 2} = \frac{1}{\sqrt{n}} \operatorname{car} \sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n}} \xrightarrow[n \to +\infty]{} 2 \\ w_n &= \frac{n^3 \left(1 - \sqrt{\frac{1 + n^2}{n^6}}\right)}{n^2 \left(\frac{\ln n}{n^2} - 2\right)} \\ &= \frac{n^3 \left(1 - \sqrt{\frac{1}{n^6} + \frac{1}{n^4}}\right)}{n^2 \left(\frac{\ln n}{n^2} - 2\right)} \sim \frac{n^3}{-2n^2} = -\frac{n}{2} \\ z_n &\sim \frac{1}{\sqrt{n + 1}} \operatorname{car} \frac{1}{\sqrt{n + 1}} \xrightarrow[n \to +\infty]{} 0 \\ &\sim \frac{1}{\sqrt{n}} \operatorname{car} n \sim n + 1 \operatorname{donc} \sqrt{n} \sim \sqrt{n + 1} \end{aligned}$$

Exercice 5

On factorise si besoin (par exemple, s'il y a des additions), et on utilise les équivalents usuels.

$$x + 1 + \ln(x) = x \underbrace{\left(1 + \frac{1}{x} + \frac{\ln x}{x}\right)}_{x \to +\infty} \sim x$$

$$x + 1 + \ln(x) = \ln(x) \underbrace{\left(\frac{x+1}{\ln(x)} + 1\right)}_{x \to 0} \sim \ln(x)$$

2.

$$\cos(\sin(x)) \sim 1 \text{ car } \cos(\sin(x)) \xrightarrow[x \to 0]{} 1$$

3.

$$e^{\sqrt{x}} + e^{-\sqrt{x}} = e^{\sqrt{x}} \underbrace{\left(1 + e^{-2\sqrt{x}}\right)}_{x \to +\infty} \sim e^{\sqrt{x}}$$

4. Puisque $\sin(x) \underset{0}{\sim} x$, $\ln(1+x^2) \underset{0}{\sim} x^2$ par substitution, et $\tan(x) \underset{0}{\sim} x$, on en déduit

$$\frac{\sin x \ln (1+x^2)}{x \tan x} \sim \frac{x \times x^2}{x \times x} = x$$

5. On écrit $\ln(\sin x) = \ln\left(\frac{\sin x}{x} \times x\right) = \ln(x) + \ln\left(\frac{\sin x}{x}\right)$. Puisque $\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1$, on en déduit que

$$\ln\left(\frac{\sin x}{x}\right) \xrightarrow[x\to 0]{} 0$$

et finalement

$$\ln(\sin x) \sim \ln(x).$$

6. Si $u(x) \xrightarrow[x \to 0]{} 1$ alors $\ln(u(x)) \sim u(x) - 1$. On a alors :

$$\ln(\cos x) \sim \cos x - 1$$
$$\sim -\frac{x^2}{2}$$

Exercice 6

1. On factorise:

$$\ln(1+x) + x^2 = x \underbrace{\left(\frac{\ln(1+x)}{x} + x\right)}_{x \to 0} \sim x$$

Enfin, d'après le cours, $x^2 + x^3 \sim x^2$. Par quotient :

$$\frac{\ln(1+x)+x^2}{x^2+x^3} \underset{0}{\sim} \frac{x}{x^2} = \frac{1}{x} \xrightarrow[x \to 0^+]{} +\infty.$$

Ainsi

$$\lim_{x \to 0^+} \frac{\ln(1+x) + x^2}{x^2 + x} = +\infty.$$

2. Par substitution, puisque $2x \xrightarrow[x\to 0]{} 0$ et $3x \xrightarrow[x\to 0]{} 0$, on a

$$\sin(2x) \sim 2x$$
 et $\tan(3x) \sim 3x$.

Par quotient

$$\frac{\sin(2x)}{\tan(3x)} \sim \frac{2x}{3x} = \frac{2}{3} \xrightarrow[x \to 0]{} \frac{2}{3}.$$

Ainsi

$$\lim_{x \to 0} \frac{\sin(2x)}{\tan(3x)} = \frac{2}{3}.$$

Exercice 7

On utilise les équivalents usuels et propriétés des équivalents pour déterminer la limite.

1. On a:

$$1 - \cos x \sim \frac{x^2}{0}$$
, $1 + 2x \sim 1$ et $x^2 - x^4 \sim x^2$.

Par quotient

$$\frac{(1-\cos x)(1+2x)}{x^2-x^4} \sim \frac{\frac{x^2}{2}}{x^2} = \frac{1}{2}.$$

Ainsi,

$$\lim_{x \to 0} \frac{(1 - \cos x)(1 + 2x)}{x^2 - x^4} = \frac{1}{2}.$$

2. De même

$$3 + x \sim 3$$
, $\sqrt{x+3} \sim \sqrt{3}$ et $\sin(\sqrt{x}) \sim \sqrt{x} \operatorname{car} \sqrt{x} \xrightarrow[x \to 0]{} 0$.

Ainsi,

$$x(3+x)\frac{\sqrt{x+3}}{\sqrt{x}\sin\left(\sqrt{x}\right)} \sim \frac{x3\sqrt{3}}{\sqrt{x}\sqrt{x}} = 3\sqrt{3}.$$

On peut donc conclure que

$$\lim_{x\to 0} x(3+x) \frac{\sqrt{x+3}}{\sqrt{x}\sin\left(\sqrt{x}\right)} = 3\sqrt{3}.$$

3. Puisque $\sin(x) \xrightarrow[x\to 0]{} 0$, on a

$$\ln(1+\sin x) \sim \sin(x) \sim x.$$

De même, $\tan(6x) \sim 6x$. Par quotient,

$$\frac{\ln(1+\sin x)}{\tan(6x)} \sim \frac{x}{6x} = \frac{1}{6}.$$

Ains,

$$\lim_{x \to 0} \frac{\ln(1 + \sin x)}{\tan(6x)} = \frac{1}{6}.$$

4. On pose $u = \frac{\pi}{2} - x$ qui tend vers 0 lorsque x tend vers $\frac{\pi}{2}$. Alors

$$\frac{\ln(\sin^2 x)}{\left(\frac{\pi}{2} - x\right)^2} = \frac{\ln\left(\sin^2\left(\frac{\pi}{2} - u\right)\right)}{u^2} = \frac{\ln\left(\cos^2 u\right)}{u^2}.$$

Puisque $\cos^2 u \xrightarrow[u\to 0]{} 1$, on a

$$\ln(\cos^2 u) \sim \cos^2 u - 1 = (\cos u - 1)(\cos u + 1) \sim -\frac{u^2}{2} \times 2 = -u^2$$

et finalement

$$\frac{\ln(\cos^2 u)}{u^2} \sim \frac{-u^2}{u^2} = -1.$$

Ainsi,

$$\lim_{x \to \frac{\pi}{2}} \frac{\ln\left(\sin^2 x\right)}{\left(\frac{\pi}{2} - x\right)^2} = -1.$$

5. Par substitution, puisque $\cos(x) \xrightarrow[x\to 0]{} 1$ et $2x \xrightarrow[x\to 0]{} 0$

$$\ln(\cos x) \sim \cos x - 1 \sim -\frac{x^2}{2}$$
 et $1 - \cos(2x) \sim \frac{(2x)^2}{2} = 2x^2$.

Par quotient,

$$\frac{\ln(\cos x)}{1 - \cos 2x} \sim \frac{-\frac{x^2}{2}}{2x^2} = -\frac{1}{4}.$$

Ainsi,

$$\lim_{x \to 0} \frac{\ln(\cos x)}{1 - \cos 2x} = -\frac{1}{4}.$$

6. Puisque $\frac{\sqrt{x+1}}{x+2} \xrightarrow[x \to +\infty]{} 0$, on peut écrire

$$\ln\left(1 - \frac{\sqrt{x+1}}{x+2}\right) \underset{+\infty}{\sim} - \frac{\sqrt{x+1}}{x+2}.$$

Ainsi

$$\sqrt{4x+1}\ln\left(1-\frac{\sqrt{x+1}}{x+2}\right) \underset{+\infty}{\sim} -\frac{\sqrt{4x+1}\sqrt{x+1}}{x+2}.$$

Par exponentiation:

$$4x + 1 \underset{+\infty}{\sim} 4x \text{ donc } \sqrt{4x + 1} \underset{+\infty}{\sim} \sqrt{4x} \text{ et } x + 1 \underset{+\infty}{\sim} x \text{ donc } \sqrt{x + 1} \underset{+\infty}{\sim} \sqrt{x}.$$

Finalement.

$$\sqrt{4x+1}\ln\left(1-\frac{\sqrt{x+1}}{x+2}\right)\underset{+\infty}{\sim}-\frac{\sqrt{4x}\sqrt{x}}{x}=-2.$$

Ainsi,

$$\lim_{x \to +\infty} \sqrt{4x+1} \ln \left(1 - \frac{\sqrt{x+1}}{x+2} \right) = -2.$$

- 7. Pas d'indétermination! La limite vaut 0.
- 8. Lorsqu'on considère une fonction puissance avec une variable, on passe à l'exponentielle :

$$\left(\frac{x}{\sin x}\right)^{\frac{\sin x}{x-\sin x}} = e^{\frac{\sin x}{x-\sin x}\ln\left(\frac{x}{\sin x}\right)}.$$

Puisque $\frac{x}{\sin x} \xrightarrow[x \to 0]{} 1$, on a

$$\ln\left(\frac{x}{\sin x}\right) \sim \frac{x}{\sin x} - 1 = \frac{x - \sin x}{\sin x}.$$

Par produit

$$\frac{\sin x}{x - \sin x} \ln \left(\frac{x}{\sin x}\right) \sim \frac{\sin x}{x - \sin x} \frac{x - \sin x}{\sin x} = 1.$$

Ainsi,

$$\frac{\sin x}{x - \sin x} \ln \left(\frac{x}{\sin x} \right) \xrightarrow[x \to 0]{} 1$$

et par composée

$$\lim_{x \to 0} \left(\frac{x}{\sin x} \right)^{\frac{\sin x}{x - \sin x}} = e.$$

9. Sans difficulté, par produit

$$\frac{(1-\cos x)\arctan x}{x\tan x} \sim \frac{\frac{x^2}{2}x}{x\times x} = \frac{x}{2} \xrightarrow[x\to 0]{} 0.$$

Ainsi,

$$\lim_{x \to 0} \frac{(1 - \cos x) \arctan x}{x \tan x} = 0.$$

Exercice 8

On utilise les équivalents et les limites usuelles pour conclure.

1. Puisque $\frac{1}{n^n} \xrightarrow[n \to +\infty]{} 0$, on a

$$\sin\left(\frac{1}{n^n}\right) \sim \frac{1}{n^n}$$

puis, par produit et formule de Stirling:

$$n! \sin\left(\frac{1}{n^n}\right) \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \frac{1}{n^n} = \frac{\sqrt{2\pi n}}{e^n} \xrightarrow[n \to +\infty]{} 0$$
 par croissances comparées.

2. Puisque $e^{-n} \longrightarrow 0$, on a

$$\ln (1 - e^{-n}) \sim -e^{-n}$$

puis par produit

$$3^n \ln{(1-\mathrm{e}^{-n})} \sim -3^n \mathrm{e}^{-n} = -\left(\frac{3}{\mathrm{e}}\right)^n \xrightarrow[n \to +\infty]{} -\infty \text{ car } \frac{3}{\mathrm{e}} > 1.$$

3. On pose $u_n = \sin\left(\frac{1}{n^2}\right)$. Puisque $\sqrt{u_n} \xrightarrow[n \to +\infty]{} 0$, on a

$$n \arctan(\sqrt{u_n}) \sim n\sqrt{u_n}$$
.

Pusique $\frac{1}{n^2} \longrightarrow 0$, $u_n \underset{+\infty}{\sim} \frac{1}{n^2}$ puis, par exponentiation $(\alpha = \frac{1}{2})$, $\sqrt{u_n} \underset{+\infty}{\sim} \sqrt{\frac{1}{n^2}} = \frac{1}{n}$ et finalement

$$n \arctan\left(\sqrt{\sin\left(\frac{1}{n^2}\right)}\right) \underset{+\infty}{\sim} n \frac{1}{n} = 1 \xrightarrow[n \to +\infty]{} 1.$$

4. Puisque $\frac{n^2-1}{n^2+1} \xrightarrow[n \to +\infty]{} 1$, on a l'équivalent

$$\ln\left(\frac{n^2-1}{n^2+1}\right) \underset{+\infty}{\sim} \frac{n^2-1}{n^2+1} - 1 = \frac{-2}{n^2+1}.$$

Finalement,

$$n^2 \ln \left(\frac{n^2 - 1}{n^2 + 1}\right) \underset{+\infty}{\sim} n^2 \frac{-2}{n^2 + 1} \underset{+\infty}{\sim} -2 \xrightarrow[n \to +\infty]{} -2.$$

5. Intuitivement, on met en facteur $\sqrt[n]{n}$:

$$n^{2} \left(\sqrt[n]{1+n} - \sqrt[n]{n} \right) = n^{2} \sqrt[n]{n} \left(\left(\frac{1+n}{n} \right)^{1/n} - 1 \right)$$
$$= n^{2} \sqrt[n]{n} \left(e^{\frac{1}{n} \ln\left(1 + \frac{1}{n}\right)} - 1 \right)$$

Puisque $\frac{1}{n} \ln \left(1 + \frac{1}{n}\right) \xrightarrow[n \to +\infty]{} 0$, on en déduit

$$e^{\frac{1}{n}\ln\left(1+\frac{1}{n}\right)} - 1 \underset{+\infty}{\sim} \frac{1}{n}\ln\left(1+\frac{1}{n}\right)$$
$$\underset{\infty}{\sim} \frac{1}{n^2}.$$

Finalement

$$n^2\sqrt[n]{n}\left(\sqrt[n]{1+n}-\sqrt[n]{n}\right)\underset{+\infty}{\sim}\sqrt[n]{n}n^2\frac{1}{n^2}=\sqrt[n]{n}=\mathrm{e}^{\frac{1}{n}\ln(n)}\xrightarrow[n\to+\infty]{}1.$$

6. On écrit sous forme exponentielle :

$$\left(\cos\left(\frac{1}{n}\right)\right)^{n^2} = e^{n^2 \ln\left(\cos\left(\frac{1}{n}\right)\right)}.$$

Puisque $\cos\left(\frac{1}{n}\right)\xrightarrow[n\to+\infty]{}1$, on en déduit l'équivalent

$$\ln\left(\cos\left(\frac{1}{n}\right)\right) \underset{+\infty}{\sim} \cos\left(\frac{1}{n}\right) - 1$$
$$\underset{+\infty}{\sim} -\frac{1}{2}\left(\frac{1}{n}\right)^2$$

puis

$$n^2 \ln \left(\cos \left(\frac{1}{n}\right)\right) \underset{+\infty}{\sim} n^2 \frac{-1}{2n^2} = -\frac{1}{2} \xrightarrow[n \to +\infty]{} -\frac{1}{2}.$$

Par composée,

$$\lim_{n \to +\infty} \left(\cos \left(\frac{1}{n} \right) \right)^{n^2} = e^{-1/2} = \frac{1}{\sqrt{e}}.$$

7. On utilise à nouveau la notation exponentielle, en constatant que $\frac{\ln n}{n} \xrightarrow[n \to +\infty]{} 0$ par croissance comparée :

$$1 - \left(\frac{1}{n^3}\right)^{1/n} = 1 - e^{\frac{1}{n}\ln\left(\frac{1}{n^3}\right)}$$

$$= 1 - e^{-3\frac{\ln n}{n}}$$

$$\approx 3\frac{\ln n}{n}$$

$$1 - \left(\frac{1}{n^2}\right)^{1/n} = 1 - e^{\frac{1}{n}\ln\left(\frac{1}{n^2}\right)}$$

$$= 1 - e^{-2\frac{\ln n}{n}}$$

$$\approx 2\frac{\ln n}{n}$$

Par quotient

$$\frac{1 - \left(\frac{1}{n^3}\right)^{1/n}}{1 - \left(\frac{1}{n^2}\right)^{1/n}} \underset{+\infty}{\sim} \frac{3\frac{\ln n}{n}}{2^{\frac{\ln n}{n}}} = \frac{3}{2} \xrightarrow[n \to +\infty]{} \frac{3}{2}.$$

Exercice 9

On applique à chaque fois les équivalents usuels, ou on s'y ramène.

$$(1+x)^{1/x} = e^{\frac{1}{x}\ln(1+x)}$$

Puisque $x \xrightarrow[x \to 0]{} 0$

$$\frac{1}{x}\ln\left(1+x\right) \sim \frac{1}{x} \times x = 1 \xrightarrow[x \to 0]{} 1$$

Par composée,

$$\lim_{x \to 0} \left(1 + x\right)^{1/x} = e$$

$$\frac{2\sqrt{x}}{\ln(1+x)} \approx \frac{2\sqrt{x}}{x}$$

$$\operatorname{donc} \frac{2\sqrt{x}}{\ln(1+x)} e^{-1/\sqrt{x}} \approx \frac{2}{\sqrt{x}} e^{-1/\sqrt{x}}$$

En posant $u = \frac{1}{\sqrt{x}}$:

$$\lim_{x\to 0^+}\frac{2}{\sqrt{x}}\mathrm{e}^{-1/\sqrt{x}}=\lim_{u\to +\infty}2u\mathrm{e}^{-u}\xrightarrow[x\to 0]{}0\text{ par croissance compar\'ee}.$$

Ainsi,

$$\lim_{x \to 0^+} \frac{2\sqrt{x}}{\ln(1+x)} e^{-1/\sqrt{x}} = 0.$$

Par équivalent (usuel et exponentiation):

$$\frac{x\sin^2(x)}{\tan(x)(1-\cos(x))} \sim \frac{x\times x^2}{x\times \frac{x^2}{2}} = 2$$

Ainsi,

$$\lim_{x\to 0}\frac{x\sin^2(x)}{\tan(x)(1-\cos(x))}=2.$$

Puisque

$$\frac{5x^2}{7x^3 + 3x^2 + 1} \sim \frac{5x^2}{-\infty} \xrightarrow[x \to -\infty]{} 0$$

on en déduit

$$x \sin\left(\frac{5x^2}{7x^3 + 3x^2 + 1}\right) \sim x \frac{5x^2}{7x^3 + 3x^2 + 1}$$
$$\sim \frac{5x^3}{7x^3} = \frac{5}{7}.$$

Donc

$$\lim_{x \to -\infty} x \sin\left(\frac{5x^2}{7x^3 + 3x^2 + 1}\right) = \frac{5}{7}.$$

On factorise, pour le cinquième, par e puis on utilise les équivalents usuels, en constatant que $\frac{1}{x} \xrightarrow[x \to +\infty]{} 0$ et $\cos{(1/x)} - 1 \xrightarrow[x \to +\infty]{} 0$.

$$\begin{split} \left(1+x^2\right)\left(\mathrm{e}^{\cos(1/x)}-\mathrm{e}\right) &= \left(1+x^2\right)\mathrm{e}\left(\mathrm{e}^{\cos(1/x)-1}-1\right) \\ & \underset{+\infty}{\sim} \ x^2\mathrm{e}\left(\cos(1/x)-1\right) \\ & \underset{+\infty}{\sim} \ x^2\mathrm{e}\left(-\frac{1}{2x^2}\right) = -\frac{\mathrm{e}}{2} \end{split}$$

Ainsi,

$$\lim_{x\to +\infty} \left(1+x^2\right) \left(\mathrm{e}^{\cos(1/x)}-\mathrm{e}\right) = -\frac{\mathrm{e}}{2}.$$

Pour la sixième, on réécrit pour faire apparaître des limites usuelles

$$\sin(x)\ln(\tan(x)) = \cos(x)\tan(x)\ln(\tan(x)) \xrightarrow[x\to 0]{} 0$$

par croissance comparée et composée (en posant $u=\tan(x)\xrightarrow[x\to 0]{}$ 0). Ainsi,

$$\lim_{x \to 0} \sin(x) \ln(\tan(x)) = 0.$$

On pose u = 1 - x. Ainsi, $u \xrightarrow[x \to 1^{-}]{} 0^{+}$. Alors:

$$\ln(1-x)\cos\left(\frac{\pi x}{2}\right) = \ln(u)\cos\left(\frac{\pi(1-u)}{2}\right)$$

$$= \ln(u)\cos\left(\frac{\pi}{2} - \frac{\pi u}{2}\right)$$

$$= \ln(u)\sin\left(\frac{\pi u}{2}\right)$$

$$\sim \ln(u)\frac{\pi u}{2} \xrightarrow{u\to 0} 0 \text{ par croissance comparée.}$$

Par composée,

$$\lim_{x \to 1^{-}} \ln(1-x) \cos\left(\frac{\pi x}{2}\right) = 0.$$

À nouveau, par équivalent usuel, et exponentiation:

$$\sqrt{5x+1}\ln\left(1-\frac{\sqrt{3x+1}}{7x+4}\right) \underset{+\infty}{\sim} \sqrt{5x} \times \left(-\frac{\sqrt{3x+1}}{7x+4}\right)$$
$$\underset{+\infty}{\sim} -\sqrt{5x}\frac{\sqrt{3x}}{7x} = -\frac{\sqrt{15}}{7}$$

Àinsi,

$$\lim_{x \to +\infty} \sqrt{5x+1} \ln \left(1 - \frac{\sqrt{3x+1}}{7x+4} \right) = -\frac{\sqrt{15}}{7}.$$

On factorise, pour la neuvième, par $\sqrt[3]{x}$ qui semble être prépondérant :

$$\sqrt[3]{x + \sqrt[3]{x + \sqrt[3]{x}}} - \sqrt[3]{x} = \sqrt[3]{x} \left(\sqrt[3]{1 + \frac{\sqrt[3]{x + \sqrt[3]{x}}}{x}} - 1 \right)$$

$$= \sqrt[3]{x} \left(\left(1 + \frac{\sqrt[3]{x + \sqrt[3]{x}}}{x} \right)^{1/3} - 1 \right)$$

Par croissance comparée,

$$\frac{\sqrt[3]{x + \sqrt[3]{x}}}{x} \xrightarrow[x \to +\infty]{} 0.$$

Par équivalent :

$$\sqrt[3]{x + \sqrt[3]{x + \sqrt[3]{x}}} - \sqrt[3]{x} \underset{+\infty}{\sim} \sqrt[3]{x} \frac{1}{3} \frac{\sqrt[3]{x + \sqrt[3]{x}}}{x}$$

$$\sim \frac{x^{2/3}}{3x} = \frac{1}{3x^{1/3}} \xrightarrow[x \to +\infty]{} 0.$$

Ainsi,

$$\lim_{x \to +\infty} \sqrt[3]{x + \sqrt[3]{x + \sqrt[3]{x}}} - \sqrt[3]{x} = 0.$$

Pour la dernière, on utilise l'écriture exponentielle :

$$\left(\frac{\ln(1+x)}{\ln(x)}\right)^{x\ln x} = e^{x\ln(x)\ln\left(\frac{\ln(1+x)}{\ln(x)}\right)}$$

Puisque $\frac{\ln(1+x)}{\ln x} \xrightarrow[x \to +\infty]{} 1$, par équivalent :

$$\begin{split} x\ln(x)\ln\left(\frac{\ln(1+x)}{\ln(x)}\right) &\underset{+\infty}{\sim} x\ln(x)\left(\frac{\ln(1+x)}{\ln x} - 1\right) \\ &\underset{+\infty}{\sim} x\left(\ln(1+x) - \ln(x)\right) \\ &\underset{+\infty}{\sim} x\ln\left(1 + \frac{1}{x}\right) \\ &\underset{+\infty}{\sim} x\frac{1}{x} = 1 \xrightarrow[x \to +\infty]{} 1. \end{split}$$

Par composée,

$$\lim_{x \to +\infty} \left(\frac{\ln(1+x)}{\ln(x)} \right)^{x \ln x} = e.$$

Exercice 10

Pour tout $k \in [0, n-2]$, on a

$$\frac{k!}{n!} = \frac{1}{n(n-1)\dots(n-k+1)}$$

Or, pour tout $k \in [0, n-2]$, $(n-2) \dots (n-k+1) \ge 1$ et donc $n(n-1) \dots (n-k+1) \ge n(n-1)$. Par application de la fonction inverse, décroissante sur \mathbb{R}_+^* ,

$$0\leqslant \frac{k!}{n!}\leqslant \frac{1}{n(n-1)}.$$

29

Mais alors:

$$\sum_{k=0}^{n} k! = n! \left(\sum_{k=0}^{n} \frac{k!}{n!} \right)$$
$$= n! \left(1 + \frac{1}{n} + \sum_{k=0}^{n-2} \frac{k!}{n!} \right)$$

Or, d'après l'inégalité précédente

$$0 \leqslant \frac{1}{n} + \sum_{k=0}^{n-2} \frac{k!}{n!} \leqslant \frac{1}{n} + \sum_{k=0}^{n-2} \frac{1}{n(n-1)}$$
$$\leqslant \frac{1}{n} + \frac{n-1}{n(n-1)} = \frac{1}{n} + \frac{1}{n} \xrightarrow[n \to +\infty]{} 0.$$

Ainsi,

$$\lim_{n \to +\infty} 1 + \frac{1}{n} + \sum_{k=0}^{n-2} \frac{k!}{n!} = 1$$

et finalement

$$\sum_{k=0}^{n} k! \underset{+\infty}{\sim} n!$$

Exercice 11

On factorise autant que possible, et on utilise les équivalents usuels.

$$\pi n - 4\ln(n) = n \underbrace{\left(\pi - 4\frac{\ln(n)}{n}\right)}_{+\infty} \sim \pi n$$

$$\sqrt{n^2 + 3} - n = \frac{n^2 + 3 - n^2}{\sqrt{n^2 + 3} + n} = \frac{3}{n\underbrace{\left(\sqrt{\frac{3 + n^2}{n^2}} + 1\right)}} \sim \frac{3}{2n}$$

$$\frac{n^{100!} - 10n! + 100^n}{10n + \sin(n) + \sqrt{n}\ln(n) + n^{100}e^{-n}} \sim \frac{-10n!}{10n} = -\frac{1}{(n - 1)!} \text{ en factorisant}$$

Puisque $\cos(\tan(3e^{-n})) \xrightarrow[n \to +\infty]{} 1$, on a l'équivalent :

$$\begin{split} \ln(\cos(\tan(3\mathrm{e}^{-n}))) &\underset{+\infty}{\sim} \cos(\tan(3\mathrm{e}^{-n})) - 1 \\ &\underset{+\infty}{\sim} -\frac{1}{2}\tan^2(3\mathrm{e}^{-n}) \ \mathrm{car} \ \cos(x) - 1 \underset{0}{\sim} -\frac{x^2}{2} \\ &\underset{+\infty}{\sim} -\frac{1}{2}\left(3\mathrm{e}^{-n}\right)^2 \ \mathrm{car} \ \tan(x) \underset{0}{\sim} x \ \mathrm{et \ par \ exponentiation} \\ &\underset{+\infty}{\sim} \frac{9}{2}\mathrm{e}^{-2n}. \end{split}$$

En factorisant:

$$\frac{4-3n^2}{\sqrt[3]{8n^5-n^2+7}} = \frac{n^2\left(\frac{4}{n^2}-3\right)}{n^{5/3}\left(\sqrt[3]{\frac{8n^5-n^2+7}{n^5}}\right)} \underset{+\infty}{\sim} -\frac{3n^2}{2n^{5/3}} = -3n^{1/3}$$

Puisque $\sqrt{\frac{2n^2-2n+1}{3n^3+4n+5}} \xrightarrow[n \to +\infty]{} 0$ par composée, on a

$$\sin\left(\sqrt{\frac{2n^2 - 2n + 1}{3n^3 + 4n + 5}}\right) \underset{+\infty}{\sim} \sqrt{\frac{2n^2 - 2n + 1}{3n^3 + 4n + 5}}$$

$$\underset{+\infty}{\sim} \sqrt{\frac{n^2\left(\frac{2n^2 - 2n + 1}{n^2}\right)}{n^3\left(\frac{3n^3 + 4n + 5}{n^3}\right)} \underset{+\infty}{\sim} \sqrt{\frac{2}{3n}}$$

Ensuite, factorisons par $\frac{1}{\sqrt{n}}$:

$$\frac{1}{n} + \arctan\left(\frac{1}{\sqrt{n}}\right) = \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{n}} + \sqrt{n}\arctan\left(\frac{1}{\sqrt{n}}\right)\right)$$

On constate alors, par équivalence

$$\sqrt{n}\arctan\left(\frac{1}{\sqrt{n}}\right) \underset{+\infty}{\sim} \sqrt{n}\frac{1}{\sqrt{n}} = 1 \xrightarrow[n \to +\infty]{} 1.$$

donc

$$\frac{1}{\sqrt{n}} + \sqrt{n} \arctan\left(\frac{1}{\sqrt{n}}\right) \xrightarrow[n \to +\infty]{} 1.$$

Ainsi

$$\frac{1}{n} + \arctan\left(\frac{1}{\sqrt{n}}\right) \underset{+\infty}{\sim} \frac{1}{\sqrt{n}}.$$

Par somme d'une suite géométrique :

$$\sum_{k=n}^{2n} \frac{1}{3^k} = \frac{\frac{1}{3^n} - \frac{1}{3^{2n+1}}}{1 - \frac{1}{3}}$$

$$= \frac{3}{2} \frac{1}{3^n} \left(1 - \frac{1}{3^{n+1}} \right) \underset{+\infty}{\sim} \frac{1}{2 \times 3^{n-1}}$$

De même, en factorisant par n^2 :

$$n - \sqrt{n^4 \cos\left(\frac{1}{n}\right)} = n^2 \underbrace{\left(\frac{1}{n} - \sqrt{\cos\left(\frac{1}{n}\right)}\right)}_{+\infty} \underset{+\infty}{\sim} -n^2$$

Enfin, en factorisant dans ln(n+1):

$$\frac{\ln(n)}{n+1} - \frac{\ln(n+1)}{n} = \frac{\ln(n)}{n+1} - \frac{\ln(n) + \ln\left(1 + \frac{1}{n}\right)}{n}$$

$$= \frac{\ln(n)}{n+1} - \frac{\ln(n)}{n} - \frac{\ln\left(1 + \frac{1}{n}\right)}{n}$$

$$= -\frac{\ln(n)}{n(n+1)} - \frac{\ln\left(1 + \frac{1}{n}\right)}{n}$$

$$= -\frac{\ln(n)}{n(n+1)} \left(1 + \frac{(n+1)\ln\left(1 + \frac{1}{n}\right)}{\ln(n)}\right)$$

Par équivalence :

$$\frac{(n+1)\ln\left(1+\frac{1}{n}\right)}{\ln(n)} \underset{+\infty}{\sim} \frac{(n+1)\frac{1}{n}}{\ln(n)} \underset{+\infty}{\sim} \frac{1}{\ln(n)} \xrightarrow[n\to+\infty]{} 0.$$

Ainsi,

$$\frac{\ln(n)}{n+1} - \frac{\ln(n+1)}{n} \underset{+\infty}{\sim} - \frac{\ln(n)}{n(n+1)} \underset{+\infty}{\sim} \frac{\ln(n)}{n^2}.$$

Exercice 12

On utilise les équivalents usuels, la substitution et l'exponentiation.

1. $\ln(1+x) \sim x$, donc

$$x\sqrt[5]{\ln(1+x)} \sim xx^{1/5} = x^{6/5}.$$

2. Puisque $\frac{1}{\ln(x)} \xrightarrow[r \to +\infty]{} 0$ donc

$$\ln\left(1 + \frac{1}{\ln(x)}\right) \underset{+\infty}{\sim} \frac{1}{\ln(x)}$$

3. Puisque $\ln(x) \xrightarrow[x \to 1]{} 0$,

$$\arctan(\ln(x)) \sim \ln(x)$$
.

- 4. En $+\infty$, $\frac{1}{x} \xrightarrow[x \to +\infty]{} 0$, donc $e^{1/x} \xrightarrow[x \to +\infty]{} 1$. Puisque $x^4 3x^2 + 7 \underset{+\infty}{\sim} x^4$, par produit $(x^4 3x^2 + 7) e^{1/x} \underset{+\infty}{\sim} x^4$.
- 5. Puisque x tend vers 1, par équivalent usuel :

$$\sqrt[3]{x} - 1 = (1 + (x - 1))^{1/7} - 1 \sim \frac{1}{7}(x - 1)$$

6. On utilise les règles de ln :

$$\ln(3-x) - \ln(\sqrt{5}-x) = \ln\left(\frac{3-x}{\sqrt{5}-x}\right).$$

Par équivalent usuel :

$$\frac{3-x}{\sqrt{5}-x} \sim \frac{-x}{-x} = 1 \xrightarrow[x \to -\infty]{} 1.$$

Par équivalent de ln en 1 :

$$\begin{split} \ln(3-x) - \ln(\sqrt{5}-x) &\underset{-\infty}{\sim} \frac{3-x}{\sqrt{5}-x} - 1 \\ &= \frac{3-\sqrt{5}}{\sqrt{5}-x} \underset{-\infty}{\sim} \frac{\sqrt{5}-3}{x}. \end{split}$$

7. Quand x tend vers $+\infty$, $\frac{1}{x}$ tend vers 0. Ainsi

$$7x^5 \sin\left(\frac{1}{x}\right) \underset{+\infty}{\sim} 7x^5 \frac{1}{x} = 7x^4.$$

Mettons alors x^4 en facteur :

$$1 - 2x^4 + 9x^3\cos(x) + 7x^5\sin\left(\frac{1}{x}\right) = x^4\left(\frac{1}{x^4} + 9\frac{\cos(x)}{x} - 2 + 7x\sin\left(\frac{1}{x}\right)\right)$$

Remarquons que $\frac{1}{x^4} \xrightarrow[x \to +\infty]{} 0$. De même

$$\left| \frac{\cos x}{x} \right| \leqslant \frac{1}{x} \xrightarrow[x \to +\infty]{} 0.$$

Enfin

$$x \sin\left(\frac{1}{x}\right) \underset{+\infty}{\sim} x \frac{1}{x} = 1 \xrightarrow[x \to +\infty]{} 1.$$

Par somme

$$\frac{1}{x^4} + 9 \frac{\cos(x)}{x} - 2 + 7x \sin\left(\frac{1}{x}\right) \xrightarrow[x \to +\infty]{} -2 + 7 = 5$$

et finalement

$$1 - 2x^4 + 9x^3\cos(x) + 7x^5\sin\left(\frac{1}{x}\right) \underset{+\infty}{\sim} 5x^4.$$

8. On est en 3. Posons x = 3 + h, avec h qui tend vers 0. Alors

$$\sqrt{6+x} - 3 = \sqrt{9+h} - 3 = 3\left(\sqrt{1+\frac{h}{9}} - 1\right).$$

$$\underset{h\to 0}{\sim} 3\left(\frac{1}{2}\frac{h}{9}\right)$$

$$\underset{x\to 3}{\sim} \frac{x-3}{6}.$$

9. En 0, $x^2 = o(\ln(x))$, donc

$$x^2 + \ln(x) \sim \ln(x)$$
.

Puisque $5 + xe^{-x} \xrightarrow[x \to 0]{} 5$, on a finalement par quotient

$$\frac{x^2 + \ln(x)}{5 + xe^{-x}} \underset{0^+}{\sim} \frac{\ln(x)}{5}.$$

En $+\infty$, on a $\ln(x) = o(x^2)$, donc $x^2 + \ln(x) \underset{+\infty}{\sim} x^2$. Par croissance comparée, $xe^{-x} \xrightarrow[x \to +\infty]{} 0$ et finalement

$$\frac{x^2 + \ln(x)}{5 + xe^{-x}} \underset{+\infty}{\sim} \frac{x^2}{5}.$$

10. Remarquons que $\sin(x) \xrightarrow[x \to \frac{\pi}{6}]{\frac{1}{2}}$ et donc $2\sin(x) \xrightarrow[x \to \frac{\pi}{6}]{\frac{\pi}{6}}$ 1. Ainsi, par équivalent de ln en 1 :

$$\begin{split} \ln(2\sin(x)) & \underset{\frac{\pi}{6}}{\sim} 2\sin(x) - 1 \\ & = 2\left(\sin(x) - \frac{1}{2}\right) = 2\left(\sin(x) - \sin\left(\frac{\pi}{6}\right)\right). \end{split}$$

Rappelons que si $f'(a) \neq 0$, alors $f(x) - f(a) \sim f'(a)(x-a)$. Or

$$\sin'\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \neq 0.$$

Ainsi,

$$\ln(2\sin(x)) \underset{\frac{\pi}{6}}{\sim} 2\frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6}\right) = \sqrt{3} \left(x - \frac{\pi}{6}\right).$$

Corrigés des exercices approfondis _

Exercice 13

Méthode

On va écrire les différentes sommes « comme une somme de Riemann », en faisant apparaître une fonction en $\frac{k}{n}$.

Pour la première suite :

$$\begin{split} u_n &= \frac{n^{\alpha}}{n^{\alpha}} \sum_{k=1}^n k^{\alpha} = \frac{1}{n^{\alpha}} \sum_{k=1}^n \left(\frac{k}{n}\right)^{\alpha} \\ &= n^{\alpha+1} \frac{1}{n} \sum_{k=1}^n \left(\frac{k}{n}\right)^{\alpha} \\ &= n^{\alpha+1} \underbrace{\frac{1}{n} \sum_{k=1}^n \left(\frac{k}{n}\right)^{\alpha}}_{=S_n} \end{split}$$

Remarquons que (S_n) désigne une somme de Riemann associée à la fonction $f:t\longmapsto t^{\alpha}$, continue, sur [0,1]. Ainsi

$$S_n \xrightarrow[n \to +\infty]{} \int_0^1 t^{\alpha} dt = \frac{1}{\alpha + 1}.$$

Ainsi

$$u_n \sim \frac{n^{\alpha+1}}{\alpha+1}.$$

De même,

$$v_n = \sum_{k=1}^n \frac{1}{\left(n\left(1 + \frac{2k}{n}\right)\right)^3} = \frac{1}{n^3} \sum_{k=1}^n \frac{1}{\left(1 + 2\frac{k}{n}\right)^3}$$
$$= \frac{1}{n^2} \underbrace{\frac{1}{n^2} \sum_{k=1}^n \frac{1}{\left(1 + 2\frac{k}{n}\right)^3}}_{=T_n}$$

 (T_n) désigne une somme de Riemann associée à la fonction $x \mapsto \frac{1}{(1+2x)^3}$, continue sur [0, 1]. Ainsi

$$T_n \xrightarrow[n \to +\infty]{} \int_0^1 \frac{1}{(1+2x)^3} dx = \left[-\frac{1}{4(1+2x)^2} \right]_0^1 = \frac{1}{6}.$$

Ainsi,

$$v_n \sim \frac{1}{6n^2}.$$

Enfin

$$w_n = \sum_{k=1}^n n \frac{k}{n} \cos \left(\frac{\pi}{2} \left(\frac{k}{n} \right)^2 \right)$$
$$= n^2 \underbrace{\frac{1}{n} \sum_{k=1}^n \frac{k}{n} \cos \left(\frac{\pi}{2} \left(\frac{k}{n} \right)^2 \right)}_{-W}$$

 (W_n) désigne une somme de Riemann associée à la fonction $t \mapsto t \cos\left(\frac{\pi}{2}t^2\right)$, continue sur [0, 1]. Ainsi

$$W_n \xrightarrow[n \to +\infty]{} \int_0^1 t \cos\left(\frac{\pi}{2}t^2\right) dt = \left[\frac{1}{\pi}\sin\left(\frac{\pi}{2}t^2\right)\right]_0^1 = \frac{1}{\pi}$$

Ainsi,

$$w_n \sim \frac{1}{\pi} n^2.$$

34

Exercice 14

On applique les équivalents usuelles, par produit, quotient. Tout d'abord, $\binom{2n}{n} = \frac{(2n)!}{n!n!}$. Par la formule de Stirling :

$$\binom{2n}{n} \stackrel{\sim}{\sim} \frac{\left(\frac{2n}{e}\right)^{2n} \sqrt{2\pi(2n)}}{\left(\left(\frac{n}{e}\right)^n \sqrt{2\pi n}\right)^2}$$

$$\stackrel{\sim}{\sim} \frac{(2n)^{2n} \sqrt{4\pi n} (e^n)^2}{e^{2n} \left(n^n \sqrt{2\pi n}\right)^2}$$

$$\stackrel{\sim}{\sim} \frac{4^n n^{2n} 2 \sqrt{\pi n} e^{2n}}{e^{2n} n^{2n} 2\pi n}$$

$$\stackrel{\sim}{\sim} \frac{4^n}{\sqrt{\pi n}}$$

Pour le deuxième, on utilise un résultat du cours : si $u_n \sim v_n$ et si $u_n \xrightarrow[n \to +\infty]{} +\infty$ alors $\ln(u_n) \sim \ln(v_n)$. La démonstration :

$$\frac{\ln(u_n)}{\ln(v_n)} = \frac{\ln\left(\frac{u_n}{v_n}v_n\right)}{\ln(v_n)}$$

$$= \frac{\ln\left(\frac{u_n}{v_n}\right) + \ln(v_n)}{\ln(v_n)}$$

$$= \frac{\ln\left(\frac{u_n}{v_n}\right)}{\ln(v_n)} + 1 \xrightarrow[n \to +\infty]{} 1.$$

Ainsi:

$$\ln(n!) \underset{+\infty}{\sim} \ln\left(\left(\frac{n}{e}\right)^n \sqrt{2\pi n}\right)$$

$$\underset{+\infty}{\sim} n \ln(n) - n \ln(e) + \ln\left(\sqrt{2\pi n}\right)$$

$$\underset{+\infty}{\sim} n \ln(n) \underbrace{\left(1 - \frac{\ln(e)}{\ln(n)} + \frac{\ln(\sqrt{2\pi n})}{n \ln(n)}\right)}_{\xrightarrow{n \to +\infty} 1} \underset{+\infty}{\sim} n \ln(n)$$

Pour la dernière, on va réécrire la formule de Stirling. Notons $x_n = \left(\frac{n}{\mathrm{e}}\right)^n \sqrt{2\pi n}$. La définition de l'équivalence donne :

$$n! \underset{+\infty}{\sim} x_n \iff n! = x_n + o(x_n) \iff n! = x_n (1 + o(1))$$

Utilisons cette écriture :

$$\begin{split} \ln\left(n!\right) &= \ln\left(x_n\left(1+\operatorname{o}\left(1\right)\right)\right) \\ &= \ln(x_n) + \ln(1+\operatorname{o}\left(1\right)) = \ln(x_n) + \operatorname{o}\left(1\right) \text{ puisque } \ln(1+u) = u + \operatorname{o}\left(u\right) \text{ en } 0. \\ &= n\ln(n) - n + \ln\left(\sqrt{2\pi n}\right) + \operatorname{o}\left(1\right) \end{split}$$

Mais alors:

$$\begin{split} \sqrt[n]{n!} &= e^{\frac{1}{n}\ln(n!)} \\ &= e^{\frac{1}{n}\left(n\ln(n) - n + \ln\left(\sqrt{2\pi n}\right) + o\left(1\right)\right)} \end{split}$$

A. Crouzet 35 ©()©

$$= e^{\ln(n) - 1 + \frac{\frac{1}{2}\ln(2\pi n)}{n} + o\left(\frac{1}{n}\right)}$$
$$= \frac{n}{e} e^{\frac{\frac{1}{2}\ln(2\pi n)}{n} + o\left(\frac{1}{n}\right)}$$

Or,

$$\frac{\frac{1}{2}\ln(2\pi n)}{n} + \mathrm{o}\left(\frac{1}{n}\right) \xrightarrow[n \to +\infty]{} 0 \text{ par croissances comparées}$$

donc

$$e^{\frac{\frac{1}{2}\ln(2\pi n)}{n} + o\left(\frac{1}{n}\right)} \xrightarrow[n \to +\infty]{} 1$$

Finalement

$$\sqrt[n]{n!} \sim \frac{n}{e}.$$

Exercice 15

On fixe n et on note $u_n = \prod_{k=1}^n \left(1 + \frac{\ln(k)}{n^2}\right)$. Tous les termes étant strictement positifs, on peut s'intéresser à $v_n = \ln(u_n)$. Mais alors :

$$v_n = \ln \left(\prod_{k=1}^n \left(1 + \frac{\ln(k)}{n^2} \right) \right)$$
$$= \sum_{k=1}^n \ln \left(1 + \frac{\ln(k)}{n^2} \right)$$

En utilisant le résultat $0 \le \ln(1+x) \le x$ valable pour tout $x \ge 0$ (ce qui est le cas ici) on a alors

$$0 \leqslant v_n \leqslant \sum_{k=1}^n \frac{\ln(k)}{n^2}$$
$$\leqslant \frac{\ln(n!)}{n^2}$$

Puisque $n! \xrightarrow[n \to +\infty]{} +\infty$, et en utilisant Stirling :

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \implies \ln(n!) \sim \ln\left(\left(\frac{n}{e}\right)^n \sqrt{2\pi n}\right)$$

(on utilise le résultat vu en cours : si $u_n \sim v_n$ et u_n ne tend pas vers 1, alors $\ln(u_n) \sim \ln(v_n)$). Or

$$\ln\left(\left(\frac{n}{e}\right)^n \sqrt{2\pi n}\right) = n \ln\left(\frac{n}{e}\right) + \ln\left(\sqrt{2\pi n}\right)$$
$$= n \ln(n) - n \ln(e) + \ln(\sqrt{2\pi n}) \sim n \ln(n)$$

car, en divisant

$$\frac{n\ln(n) - n\ln(e) + \ln(\sqrt{2\pi n})}{n\ln(n)} = 1 - \frac{\ln(e)}{\ln(n)} + \frac{\frac{1}{2}\ln(2\pi n)}{n\ln(n)} \xrightarrow[n \to +\infty]{} 1.$$

Finalement, par quotient

$$\frac{\ln(n!)}{n^2} \sim \frac{n \ln(n)}{n^2} \xrightarrow[n \to +\infty]{} 0.$$

D'après le théorème d'encadrement, $v_n \xrightarrow[n \to +\infty]{} 0$ et puisque $v_n = \ln(u_n)$, on conclut :

$$u_n = e^{v_n} \xrightarrow[n \to +\infty]{} 1.$$

Exercice 16

Fixons a et b deux réels strictement positifs, et $n \in \mathbb{N}^*$. Constatons que $\left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2}\right)^n > 0$. On peut alors s'intéresser à

$$u_n = \ln\left(\left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2}\right)^n\right).$$

Ainsi:

$$\begin{split} u_n &= \ln \left(\left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} \right)^n \right) \\ &= \ln \left(\exp \left(n \ln \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} \right) \right) \right) \\ &= n \ln \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} \right) \\ &= n \ln \left(\frac{\mathrm{e}^{\frac{1}{n} \ln(a)} + \mathrm{e}^{\frac{1}{n} \ln(b)}}{2} \right) \end{split}$$

Puisque $\frac{1}{n}\ln(a) \xrightarrow[n \to +\infty]{} 0$ et $\frac{1}{n}\ln(b) \xrightarrow[n \to +\infty]{} 0$, on peut faire un développement asymptotique :

$$e^{\frac{1}{n}\ln(a)} = 1 + \frac{1}{n}\ln(a) + o\left(\frac{1}{n}\right)$$
 et $e^{\frac{1}{n}\ln(b)} = 1 + \frac{1}{n}\ln(a) + o\left(\frac{1}{n}\right)$.

Ainsi,

$$\begin{split} u_n &= n \ln \left(\frac{1 + \frac{1}{n} \ln(a) + 1 + \frac{1}{n} \ln(b) + \operatorname{o}\left(\frac{1}{n}\right)}{2} \right) \\ &= n \ln \left(1 + \frac{1}{2n} \left(\ln(a) + \ln(b) \right) + \operatorname{o}\left(\frac{1}{n}\right) \right) \\ &= n \left(\frac{1}{2n} \left(\ln(a) + \ln(b) \right) + \operatorname{o}\left(\frac{1}{n}\right) \right) \text{ en utilisant le DL de } \ln(1 + u) \\ &= \frac{\ln(a) + \ln(b)}{2} + \operatorname{o}\left(1\right) \xrightarrow[n \to +\infty]{} \frac{\ln(a) + \ln(b)}{2}. \end{split}$$

Par continuité de la fonction exponentielle :

$$e^{u_n} \xrightarrow[n \to +\infty]{} e^{\frac{\ln(a) + \ln(b)}{2}} = e^{\frac{1}{2}\ln(ab)} = \sqrt{ab}.$$

Bilan :

$$\left[\left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} \right)^n \xrightarrow[n \to +\infty]{} \sqrt{ab}. \right]$$

Exercice 17

1. Remarquons que

$$\frac{u_{n+1}}{u_n} = \frac{\mathrm{e}^{a(n+1)}}{\mathrm{e}^{an}} = \mathrm{e}^a \quad \text{et} \quad \frac{v_{n+1}}{v_n} = \frac{(n+1)!}{n!} = n+1.$$

Puisque $\frac{v_{n+1}}{v_n} \xrightarrow[n \to +\infty]{} +\infty$, il existe un rang n_0 à partir duquel $\frac{v_{n+1}}{v_n} \geqslant 2e^a$ et finalement

$$\forall \, n \geqslant n_0, \quad \frac{u_{n+1}}{u_n} \leqslant \frac{1}{2} \frac{v_{n+1}}{v_n}.$$

A. Crouzet 37 ©®

2. Remarquons que le résultat précédent s'écrit, puisque les suites sont à termes strictement positifs:

$$\forall n \geqslant n_0, \quad \frac{u_{n+1}}{v_{n+1}} \leqslant \frac{1}{2} \frac{u_n}{v_n}.$$

- Montrons alors par récurrence que P_n : $\langle \frac{u_n}{v_n} \leqslant C\left(\frac{1}{2}\right)^{n-n_0} \gg \text{pour } n \geqslant n_0$. Pour $n=n_0$, on constate que $\left(\frac{1}{2}\right)^{n-n_0}=1$. Ainsi, en prenant $C=\frac{u_{n_0}}{v_{n_0}}$, on a bien $\frac{u_n}{v_n}\leqslant 1$ $C\left(\frac{1}{2}\right)^{n-n_0}$ pour $n=n_0$.
- Supposons la proposition P_n vérifiée pour un certain $n \ge n_0$. En utilisant la relation précé-

$$\frac{u_{n+1}}{v_{n+1}} \leqslant \frac{1}{2} \frac{u_n}{v_n} \leqslant \frac{1}{2} C \left(\frac{1}{2}\right)^{n-n_0} \text{ par H.R.}$$

Ainsi,

$$\frac{u_{n+1}}{v_{n+1}} \leqslant C\left(\frac{1}{2}\right)^{n+1-n_0}$$

et P_{n+1} est vérifiée.

Ainsi, pour tout $n \geqslant n_0, \, P_n$ est vérifiée, et en multipliant par $v_n > 0$

$$\boxed{\forall\, n\geqslant n_0,\quad u_n\leqslant C\left(\frac{1}{2}\right)^{n-n_0}v_n.}$$

3. On peut alors conclure : pour tout $n \ge n_0$

$$0 \leqslant \frac{u_n}{v_n} \leqslant C\left(\frac{1}{2}\right)^{n-n_0}.$$

Or, $\left(\frac{1}{2}\right)^{n-n_0} \xrightarrow[n \to +\infty]{} 0$ car $-1 < \frac{1}{2} < 1$. Par encadrement, on peut conclure que

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = 0$$

c'est-à-dire

$$e^{an} = o(n!).$$

Corrigés des exercices bilans _

Exercice 18

1. a) Soit $n \in \mathbb{N}^*$. On calcule en développant :

$$\begin{split} \int_{n}^{n+1} (x-n)(n+1-x) \mathrm{d}x &= \int_{n}^{n+1} ((n+1)x - x^2 - n(n+1) + nx) \mathrm{d}x \\ &= \int_{n}^{n+1} (2n+1)x - x^2 - n(n+1) \mathrm{d}x \\ &= \left[(2n+1) \frac{x^2}{2} - \frac{x^3}{3} - n(n+1)x \right]_{n}^{n+1} \\ &= (2n+1) \frac{(n+1)^2 - n^2}{2} - \frac{(n+1)^3 - n^3}{3} - n(n+1)(n+1-n) \\ &= \frac{12n^2 + 12n + 3 - (6n^2 + 6n + 2) - 6n^2 - 6n}{6} = \frac{1}{6}. \end{split}$$

A. Crouzet 38 $\Theta(\mathbf{\hat{f}})$ De même :

$$\begin{split} \int_{n}^{n+1} (x-n)(n+1-x) \frac{1}{x^2} \mathrm{d}x &= \int_{n}^{n+1} \frac{2n+1}{x} - 1 - \frac{n(n+1)}{x^2} \mathrm{d}x \\ &= (2n+1) \int_{n}^{n+1} \frac{\mathrm{d}x}{x} - \int_{n}^{n+1} \mathrm{d}x - n(n+1) \int_{n}^{n+1} \frac{\mathrm{d}x}{x^2} \text{ par linéarité} \\ &= (2n+1) \left[\ln(|x|) \right]_{n}^{n+1} - \left[1 \right]_{n}^{n+1} - n(n+1) \left[-\frac{1}{x} \right]_{n}^{n+1} \\ &= (2n+1) (\ln(n+1) - \ln(n)) - (n+1-n) - n(n+1) \left(-\frac{1}{n+1} + \frac{1}{n} \right) \\ &= (2n+1) (\ln(n+1) - \ln(n)) - 1 - n(n+1) \frac{1}{n(n+1)} \\ &= -2 + (2n+1) (\ln(n+1) - \ln(n)). \end{split}$$

b) Remarquons qu'en ré-écrivant la deuxième intégrale :

$$\begin{aligned} -2 + (2n+1)(\ln(n+1) - \ln(n)) &= -2 + (2n+1)\ln\left(\frac{n+1}{n}\right) \\ &= -2 + (2n+1)\ln\left(1 + \frac{1}{n}\right) \\ &= 2\left(-1 + \left(n + \frac{1}{2}\right)\ln\left(1 + \frac{1}{n}\right)\right). \end{aligned}$$

Encadrons donc l'intégrale en question. Tout d'abord, pour tout $x \in [n, n+1]$, on a

$$x-n\geqslant 0$$
 et $(n+1)-x\geqslant 0 \implies (x-n)(n+1-x)\geqslant 0.$

Par positivité de l'intégrale, on peut en déduire que

$$\int_{n}^{n+1} (x-n)(n+1-x) \frac{1}{x^2} dx \ge 0.$$

De même, pour $x \in [n, n+1]$, on a, par croissance de la fonction carrée sur \mathbb{R}^+ et décroissance de la fonction inverse sur \mathbb{R}_+^* :

$$n \leqslant x \leqslant n+1 \implies n^2 \leqslant x^2 \implies \frac{1}{r^2} \leqslant \frac{1}{n^2}.$$

Ainsi, pour tout $x \in [n, n+1]$:

$$(x-n)(n+1-x)\frac{1}{x^2} \ \leqslant (x-n)(n+1-x)\frac{1}{n^2}.$$

Par croissance de l'intégrale :

$$\int_{n}^{n+1} (x-n)(n+1) - x \frac{1}{x^{2}} dx \le \int_{n}^{n+1} (x-n)(n+1-x) \frac{1}{n^{2}} dx$$

$$= \frac{1}{n^{2}} \int_{n}^{n+1} (x-n)(n+1-x) dx = \frac{1}{6n^{2}}.$$

Ainsi,

$$0 \leqslant \int_{x}^{n+1} (x-n)(n+1-x) \frac{1}{x^2} dx \leqslant \frac{1}{6n^2}$$

soit, d'après le calcul vu précédemment :

$$0 \leqslant 2\left(-1 + \left(n + \frac{1}{2}\right)\ln\left(1 + \frac{1}{n}\right)\right) \leqslant \frac{1}{6n^2}.$$

En divisant par 2:

$$0 \leqslant -1 + \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right) \leqslant \frac{1}{12n^2}.$$

A. Crouzet 39 ©®

2. Soit $n \in \mathbb{N}^*$. On calcule « simplement » :

$$\begin{split} \frac{x_{n+1}}{x_n} &= \frac{\frac{(n+1)^{n+1}\sqrt{n+1}}{\mathrm{e}^{n+1}(n+1)!}}{\frac{n^n\sqrt{n}}{\mathrm{e}^n n!}} \\ &= \frac{(n+1)^{n+1}\sqrt{n+1}}{\mathrm{e}^{n+1}(n+1)!} \frac{\mathrm{e}^n n!}{n^n\sqrt{n}} \\ &= \frac{(n+1)^n(n+1)\cancel{n!}\sqrt{n+1}}{n^n(n+1)!} \sqrt{n+1} \\ &= \left(\frac{n+1}{n}\right)^n\sqrt{\frac{n+1}{n}}\mathrm{e}^{-1} \\ &= \left(1+\frac{1}{n}\right)^n\left(1+\frac{1}{n}\right)^{1/2}\mathrm{e}-1 = \frac{1}{\mathrm{e}}\left(1+\frac{1}{n}\right)^{n+1/2}. \end{split}$$

3. Montrons que les suites u et v sont adjacentes. Tout d'abord, elles sont bien définies car $x_n>0$ pour tout entier $n\geqslant 1$. Soit $n\in\mathbb{N}^*$.

$$\begin{split} u_{n+1} - u_n &= \ln(x_{n+1}) - \ln(x_n) = \ln\left(\frac{x_{n+1}}{x_n}\right) \\ &= \ln\left(\frac{1}{e}\left(1 + \frac{1}{n}\right)^{n+1/2}\right) \\ &= -1 + \left(n + \frac{1}{2}\right)\ln\left(1 + \frac{1}{n}\right) \\ &= -1 + \left(n + \frac{1}{2}\right)(\ln(n+1) - \ln(n)). \end{split}$$

Cette quantité, d'après la question 1.b., est positive. Ainsi, la suite (u_n) est croissante.

$$\begin{split} v_{n+1} - v_n &= u_{n+1} + \frac{1}{12n} - u_n - \frac{1}{12(n-1)} \\ &= u_{n+1} - u_n - \frac{1}{12n(n-1)} \\ &= -1 + \left(n + \frac{1}{2}\right) \left(\ln(n+1) - \ln(n)\right) - \frac{1}{12n(n-1)}. \end{split}$$

Toujours d'après la question 1.b.:

$$-1 + \left(n + \frac{1}{2}\right) \left(\ln(n+1) - \ln(n)\right) - \frac{1}{12n(n-1)} \leqslant \frac{1}{12n^2} - \frac{1}{12n(n-1)} < 0.$$

Ainsi, la suite (v_n) est décroissante. Enfin,

$$v_n - u_n = \frac{1}{12(n-1)} \xrightarrow[n \to +\infty]{} 0.$$

Les suites (u_n) et (v_n) sont donc adjacentes. Par théorème, elles convergent et vers la même limite.

4. Notons A la limite commune de u et v. Mais alors, par continuité de exp sur $\mathbb R$:

$$x_n = e^{u_n} \xrightarrow[n \to +\infty]{} e^A > 0$$

En notant $C = e^A$, on en déduit que

$$x_n \underset{+\infty}{\sim} C \implies n! \underset{+\infty}{\sim} C \frac{n^n \sqrt{n}}{e^n} = C \left(\frac{n}{e}\right)^n \sqrt{n}.$$

A. Crouzet 40 ©®

5. On utilise l'équivalent démontré à l'instant et celui rappelé dans l'énoncé. On a, par substitution :

$$(2n)! \underset{+\infty}{\sim} C\sqrt{2n} \left(\frac{2n}{e}\right)^{2n}.$$

et par exponentiation:

$$(n!)^2 \underset{+\infty}{\sim} C^2 n \left(\frac{n}{e}\right)^{2n}$$
.

et donc, par produit:

$$\frac{(2n)!}{4^n(n!)^2} \underset{+\infty}{\sim} \frac{C\sqrt{2n} \left(\frac{2n}{e}\right)^{2n}}{4^n C^2 n \left(\frac{n}{e}\right)^{2n}}$$

$$\underset{+\infty}{\sim} \frac{C\sqrt{2n} 2^{2n} n^{2n} e^{2n}}{\cancel{4^n} C^2 n n^{2n} e^{2n}} \underset{+\infty}{\sim} \frac{\sqrt{2}}{C\sqrt{n}}$$

Or,

$$\frac{(2n)!}{4^n(n!)^2} \frac{\pi}{2} \underset{+\infty}{\sim} \sqrt{\frac{\pi}{4n}}$$

donc, par transitivité

$$\frac{\sqrt{2}}{C\sqrt{n}}\frac{\pi}{2} \underset{+\infty}{\sim} \frac{\sqrt{\pi}}{2\sqrt{n}} \implies C \underset{+\infty}{\sim} \sqrt{2\pi}$$

et donc, par limite : $C = \sqrt{2\pi}$. On a donc bien démontré que

$$\boxed{n! \underset{+\infty}{\sim} \sqrt{2\pi} \left(\frac{n}{\mathrm{e}}\right)^n \sqrt{n} = \left(\frac{n}{\mathrm{e}}\right)^n \sqrt{2\pi n}}.$$

Corrigés des sujets de concours .

Suiet 1

1. a) 1 est racine de P. Par division euclidienne, $P=(X-1)(2X^2-X-1)$. Le trinôme $2X^2-X-1$ admet deux racines : 1 et $-\frac{1}{2}$. Finalement, par factorisation

$$2X^3 - 3X^2 + 1 = 2(X - 1)^2 \left(X + \frac{1}{2}\right) = (X - 1)^2 (2X + 1).$$

b) f est dérivable sur I, comme somme de deux fonctions trigonométriques dérivable sur I. La fonction $x \longmapsto -x$ étant dérivable, car polynomiale, la somme u est bien dérivable sur I. Pour tout $x \in I$:

$$u'(x) = \frac{1}{3} \left(2\cos(x) + \frac{1}{\cos^2(x)} \right) - 1$$
$$= \frac{1}{3} \frac{2\cos^3(x) + 1 - 3\cos^2(x)}{\cos^2(x)} = \frac{P(\cos(x))}{3\cos^2(x)}.$$

- c) D'après la factorisation vue en 1.a., remarquons que P(x) est du signe de $X+\frac{1}{2}$. Or, pour tout $x\in I$, $\cos(x)\in[0,\,1]$. Donc pour tout $x\in I$, $\cos(x)+\frac{1}{2}>0$: ainsi $u'(x)\geqslant 0$ et ne s'annule qu'en 0: la fonction u est strictement croissante sur I.
- d) Procédons de la même manière. g est dérivable sur I comme somme et quotient de fonctions trigonométriques et constantes, dérivables sur I, dont le dénominateur ne s'annule pas (puisque

©⊕®

 $\cos(x) \geqslant -1$, $2 + \cos(x) \geqslant 1 > 0$). Par somme, v est également dérivable et on a, pour tout réel $x \in I$:

$$\begin{split} v'(x) &= 1 - \frac{3\cos(x)(2+\cos(x)) - 3\sin(x)(-\sin(x))}{(2+\cos(x))^2} \\ &= \frac{(2+\cos(x))^2 - 6\cos(x) - 3\cos^2(x) - 3\sin^2(x)}{(2+\cos(x))^2} \\ &= \frac{4+4\cos(x) + \cos^2(x) - 6\cos(x) - 3\cos^2(x) - 3(1-\cos^2(x))}{(2+\cos(x))^2} \\ &= \frac{\cos^2(x) - 2\cos(x) + 1}{(2+\cos(x))^2} = \frac{Q(\cos(x))}{(2+\cos(x))^2} \end{split}$$

en notant $P(X) = X^2 - 2X + 1 = (X - 1)^2$.

e) Remarquons que P est toujours strictement positif, sauf en 1, donc v' est strictement positive, sauf en 0:v est strictement croissante sur I.

f) Utilisons ce qu'on a démontré précédemment. u est strictement croissante sur I, donc

$$\forall\,x\in I,\quad u(x)>\lim_{t\to 0}u(t)=0\iff f(x)-x>0.$$

De même, v est strictement croissante donc

$$\forall\,x\in I,\quad v(x)>\lim_{t\to 0}v(t)=0\iff x-g(x)>0.$$

En réunissant ces deux résultats :

$$\forall x \in I, \quad g(x) < x < f(x).$$

2. a) On utilise simplement l'énoncé et les formules d'addition :

$$\cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$$

$$= \cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right)$$

$$= \frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}\frac{1}{2} = \frac{\sqrt{2} + \sqrt{6}}{4}.$$

$$\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{4} - \frac{\pi}{6}\right)$$

$$= \sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) - \cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right)$$

$$= \frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$\tan\left(\frac{\pi}{12}\right) = \frac{\sin\left(\frac{\pi}{12}\right)}{\cos\left(\frac{\pi}{12}\right)} = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}}$$

$$= \frac{(\sqrt{6} - \sqrt{2})(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})}$$

$$= \frac{8 - 2\sqrt{12}}{4} = 2 - \sqrt{3}.$$

b) Appliquons l'inégalité 1.f. en $x = \frac{\pi}{12} \in I$.

$$\frac{3\frac{\sqrt{6}-\sqrt{2}}{4}}{2+\frac{\sqrt{6}+\sqrt{2}}{4}} < \frac{\pi}{12} < \frac{1}{3}\left(2\frac{\sqrt{6}-\sqrt{2}}{4} + 2 - \sqrt{3}\right)$$

soit

$$36\frac{\sqrt{6}-\sqrt{2}}{8+\sqrt{6}+\sqrt{2}} < \pi < 2\sqrt{6}-2\sqrt{2}+8-4\sqrt{3}.$$

A. Crouzet 42 ©®

Une remarque : cela donne l'encadrement

$$3,1415099936 < \pi < 3,1423491305$$

3. a) On part de la formule d'addition. Soit $\theta \in \mathbb{R}$.

$$cos(2\theta) = cos(\theta + \theta) = cos(\theta) cos(\theta) - sin(\theta) sin(\theta)$$
$$= cos^{2}(\theta) - sin^{2}(\theta) = (1 - sin^{2}(\theta)) - sin^{2}(\theta) = 1 - 2sin^{2}(\theta).$$

Remarquons alors que

$$\frac{\pi}{3\times 2^n} = 2\times \frac{\pi}{3\times 2^{n+1}}$$

Ainsi:

$$\begin{split} b_n &= \cos \left(2 \times \frac{\pi}{3 \times 2^{n+1}} \right) \\ &= 1 - 2 \sin^2 \left(\frac{\pi}{3 \times 2^{n+1}} \right) = 1 - 2a_{n+1}^2. \end{split}$$

Ainsi, $a_{n+1}^2=\frac{1-b_n}{2}$ et puisque pour tout $n,\ 0<\frac{\pi}{3\times 2^n}\leqslant \frac{\pi}{2},\ a_{n+1}>0.$ Ainsi

$$\boxed{a_{n+1} = \sqrt{\frac{1 - b_n}{2}}.}$$

Par l'identité fondamentale de la trigonométrie :

$$a_{n+1}^2 + b_{n+1}^2 = 1 \implies b_{n+1}^2 = 1 - a_{n+1}^2 = 1 - \frac{1 - b_n}{2} = \frac{1 + b_n}{2}.$$

Or, puisque $0 < \frac{\pi}{3 \times 2^n} \leqslant \frac{\pi}{2}, \, b_{n+1} \geqslant 0$ et donc

$$b_{n+1} = \sqrt{\frac{1+b_n}{2}}.$$

b) Soit $n \in \mathbb{N}$. On applique l'inégalité vue en 1.f, pour le réel $x = \frac{\pi}{3 \times 2^n} \in I$:

$$g\left(\frac{\pi}{3\times 2^n}\right) < \frac{\pi}{3\times 2^n} < f\left(\frac{\pi}{3\times 2^n}\right).$$

On calcule:

$$g\left(\frac{\pi}{3\times 2^n}\right) = \frac{3\sin\left(\frac{\pi}{3\times 2^n}\right)}{2+\cos\left(\frac{\pi}{3\times 2^n}\right)} = \frac{3a_n}{2+b_n}$$
$$f\left(\frac{\pi}{3\times 2^n}\right) = \frac{1}{3}\left(2\sin\left(\frac{\pi}{3\times 2^n}\right) + \tan\left(\frac{\pi}{3\times 2^n}\right)\right)$$
$$= \frac{1}{3}\left(2a_n + \frac{a_n}{b_n}\right)$$

Ainsi,

$$\frac{3a_n}{2+b_n} < \frac{\pi}{3 \times 2^n} < \frac{1}{3} \left(2a_n + \frac{a_n}{b_n} \right)$$

ou encore, en multipliant par 3×2^n :

$$\boxed{9 \times 2^n \frac{a_n}{2 + b_n} < \pi < 2^n \left(2a_n + \frac{a_n}{b_n} \right).}$$

c) Puisque $\frac{\pi}{3 \times 2^n} \xrightarrow[n \to +\infty]{} 0$, on a

$$a_n \sim \frac{\pi}{3 \times 2^n}$$
 et $b_n \xrightarrow[n \to +\infty]{} 1$.

Par somme, $2 + b_n \xrightarrow[n \to +\infty]{} 3$. Par équivalent :

$$2^n a_n \sim \frac{\pi}{3} \xrightarrow[n \to +\infty]{} \frac{\pi}{3}.$$

Par produit de limites:

$$9 \times 2^n \frac{a_n}{2 + b_n} \xrightarrow[n \to +\infty]{} 9 \times \frac{\pi}{3 \times 3} = \pi.$$

De même

$$2^n\left(2a_n+\frac{a_n}{b_n}\right)=2\times 2^na_n+\frac{2^na_n}{b_n}\xrightarrow[n\to+\infty]{}2\frac{\pi}{3}+\frac{\pi}{3}=\pi.$$

d) On applique la relation précédente, et on calcule dans que la différence entre les bornes est supérieure à e.

```
from numpy import sqrt

def h(e):
    k = 0
    a = sqrt(3) / 2
    b = 1 / 2
    while ((2**k)*(2*a+a/b) - 9*(2**k)*a/(2+b))>e:
        a = sqrt((1-b)/2)
        b = sqrt((1+b)/2)
        k = k+1
    x = (2**k) *(2*a+a/b)
    return (x, k)
```

e) On applique simplement la fonction précédente :

```
def evolution(p):
    res = []  # On initialise une liste vide
    for i in range(1,p+1):
        res.append(h(10**(-i))[1]) # Juste le nb d'itération
    return res
```

Avec les tableaux numpy:

```
import numpy as np
def evolution(p):
    res = np.zeros(p) # On initialise tous les coeffs à 0
    for i in range(1,p+1):
        res[i-1] = h(10**(-i))[1] # Attention au décalage
    return res
```

f) On constate lorsqu'on a obtenu une précision de 10^{-16} , ce qui se fait en seulement 13 itérations, en réalité on a obtenu une bien meilleure précision.

A. Crouzet 44 ©(•)©